We incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG
to see the complete config.
You may also pass --options xxx.yyy=zzz
to see updated config.
There are 4 basic component types under config/_base_
, dataset, model, schedule, default_runtime.
Many methods could be easily constructed with one of each like SECOND, PointPillars, PartA2, and VoteNet.
The configs that are composed by components from _base_
are called primitive.
For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.
For easy understanding, we recommend contributors to inherit from exiting methods.
For example, if some modification is made based on PointPillars, user may first inherit the basic PointPillars structure by specifying _base_ = ../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py
, then modify the necessary fields in the config files.
If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder xxx_rcnn
under configs
,
Please refer to mmcv for detailed documentation.
We follow the below style to name config files. Contributors are advised to follow the same style.
{model}_[model setting]_{backbone}_{neck}_[norm setting]_[misc]_[batch_per_gpu x gpu]_{schedule}_{dataset}
{xxx}
is required field and [yyy]
is optional.
{model}
: model type likehv_pointpillars
(Hard Voxelization PointPillars),VoteNet
, etc.[model setting]
: specific setting for some model.{backbone}
: backbone type likeregnet-400mf
,regnet-1.6gf
.{neck}
: neck type likefpn
,secfpn
.[norm_setting]
:bn
(Batch Normalization) is used unless specified, other norm layer type could begn
(Group Normalization),sbn
(Synchronized Batch Normalization).gn-head
/gn-neck
indicates GN is applied in head/neck only, whilegn-all
means GN is applied in the entire model, e.g. backbone, neck, head.[misc]
: miscellaneous setting/plugins of model, e.g.strong-aug
means using stronger augmentation strategies for training.[batch_per_gpu x gpu]
: samples per GPU and GPUs,4x8
is used by default.{schedule}
: training schedule, options are1x
,2x
,20e
, etc.1x
and2x
means 12 epochs and 24 epochs respectively.20e
is adopted in cascade models, which denotes 20 epochs. For1x
/2x
, initial learning rate decays by a factor of 10 at the 8/16th and 11/22th epochs. For20e
, initial learning rate decays by a factor of 10 at the 16th and 19th epochs.{dataset}
: dataset likenus-3d
,kitti-3d
,lyft-3d
,scannet-3d
,sunrgbd-3d
. We also indicate the number of classes we are using if there exist multiple settings, e.g.,kitti-3d-3class
andkitti-3d-car
means training on KITTI dataset with 3 classes and single class, respectively.
Following MMDetection, the train_cfg
and test_cfg
are deprecated in config file, please specify them in the model config. The original config structure is as below.
# deprecated
model = dict(
type=...,
...
)
train_cfg=dict(...)
test_cfg=dict(...)
The migration example is as below.
# recommended
model = dict(
type=...,
...
train_cfg=dict(...),
test_cfg=dict(...)
)
model = dict(
type='VoteNet', # The type of detector, refer to mmdet3d.models.detectors for more details
backbone=dict(
type='PointNet2SASSG', # The type of the backbone, refer to mmdet3d.models.backbones for more details
in_channels=4, # Input channels of point cloud
num_points=(2048, 1024, 512, 256), # The number of points which each SA module samples
radius=(0.2, 0.4, 0.8, 1.2), # Radius for each set abstraction layer
num_samples=(64, 32, 16, 16), # Number of samples for each set abstraction layer
sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
(128, 128, 256)), # Out channels of each mlp in SA module
fp_channels=((256, 256), (256, 256)), # Out channels of each mlp in FP module
norm_cfg=dict(type='BN2d'), # Config of normalization layer
sa_cfg=dict( # Config of point set abstraction (SA) module
type='PointSAModule', # type of SA module
pool_mod='max', # Pool method ('max' or 'avg') for SA modules
use_xyz=True, # Whether to use xyz as features during feature gathering
normalize_xyz=True)), # Whether to use normalized xyz as feature during feature gathering
bbox_head=dict(
type='VoteHead', # The type of bbox head, refer to mmdet3d.models.dense_heads for more details
num_classes=18, # Number of classes for classification
bbox_coder=dict(
type='PartialBinBasedBBoxCoder', # The type of bbox_coder, refer to mmdet3d.core.bbox.coders for more details
num_sizes=18, # Number of size clusters
num_dir_bins=1, # Number of bins to encode direction angle
with_rot=False, # Whether the bbox is with rotation
mean_sizes=[[0.76966727, 0.8116021, 0.92573744],
[1.876858, 1.8425595, 1.1931566],
[0.61328, 0.6148609, 0.7182701],
[1.3955007, 1.5121545, 0.83443564],
[0.97949594, 1.0675149, 0.6329687],
[0.531663, 0.5955577, 1.7500148],
[0.9624706, 0.72462326, 1.1481868],
[0.83221924, 1.0490936, 1.6875663],
[0.21132214, 0.4206159, 0.5372846],
[1.4440073, 1.8970833, 0.26985747],
[1.0294262, 1.4040797, 0.87554324],
[1.3766412, 0.65521795, 1.6813129],
[0.6650819, 0.71111923, 1.298853],
[0.41999173, 0.37906948, 1.7513971],
[0.59359556, 0.5912492, 0.73919016],
[0.50867593, 0.50656086, 0.30136237],
[1.1511526, 1.0546296, 0.49706793],
[0.47535285, 0.49249494, 0.5802117]]), # Mean sizes for each class, the order is consistent with class_names.
vote_moudule_cfg=dict( # Config to vote module branch, refer to mmdet3d.models.model_utils for more details
in_channels=256, # Input channels for vote_module
vote_per_seed=1, # Number of votes to generate for each seed
gt_per_seed=3, # Number of gts for each seed
conv_channels=(256, 256), # Channels for convolution
conv_cfg=dict(type='Conv1d'), # Config to convolution
norm_cfg=dict(type='BN1d'), # Config to normalization
norm_feats=True, # Whether to normalize features
vote_loss=dict( # Config to the loss function for voting branch
type='ChamferDistance', # Type of loss for voting branch
mode='l1', # Loss mode of voting branch
reduction='none', # Specifies the reduction to apply to the output
loss_dst_weight=10.0)), # Destination loss weight of the voting branch
vote_aggregation_cfg=dict( # Config to vote aggregation branch
type='PointSAModule', # type of vote aggregation module
num_point=256, # Number of points for the set abstraction layer in vote aggregation branch
radius=0.3, # Radius for the set abstraction layer in vote aggregation branch
num_sample=16, # Number of samples for the set abstraction layer in vote aggregation branch
mlp_channels=[256, 128, 128, 128], # Mlp channels for the set abstraction layer in vote aggregation branch
use_xyz=True, # Whether to use xyz
normalize_xyz=True), # Whether to normalize xyz
feat_channels=(128, 128), # Channels for feature convolution
conv_cfg=dict(type='Conv1d'), # Config to convolution
norm_cfg=dict(type='BN1d'), # Config to normalization
objectness_loss=dict( # Config to objectness loss
type='CrossEntropyLoss', # Type of loss
class_weight=[0.2, 0.8], # Class weight of the objectness loss
reduction='sum', # Specifies the reduction to apply to the output
loss_weight=5.0), # Loss weight of the objectness loss
center_loss=dict( # Config to center loss
type='ChamferDistance', # Type of loss
mode='l2', # Loss mode of center loss
reduction='sum', # Specifies the reduction to apply to the output
loss_src_weight=10.0, # Source loss weight of the voting branch.
loss_dst_weight=10.0), # Destination loss weight of the voting branch.
dir_class_loss=dict( # Config to direction classification loss
type='CrossEntropyLoss', # Type of loss
reduction='sum', # Specifies the reduction to apply to the output
loss_weight=1.0), # Loss weight of the direction classification loss
dir_res_loss=dict( # Config to direction residual loss
type='SmoothL1Loss', # Type of loss
reduction='sum', # Specifies the reduction to apply to the output
loss_weight=10.0), # Loss weight of the direction residual loss
size_class_loss=dict( # Config to size classification loss
type='CrossEntropyLoss', # Type of loss
reduction='sum', # Specifies the reduction to apply to the output
loss_weight=1.0), # Loss weight of the size classification loss
size_res_loss=dict( # Config to size residual loss
type='SmoothL1Loss', # Type of loss
reduction='sum', # Specifies the reduction to apply to the output
loss_weight=3.3333333333333335), # Loss weight of the size residual loss
semantic_loss=dict( # Config to semantic loss
type='CrossEntropyLoss', # Type of loss
reduction='sum', # Specifies the reduction to apply to the output
loss_weight=1.0)), # Loss weight of the semantic loss
train_cfg = dict( # Config of training hyperparameters for votenet
pos_distance_thr=0.3, # distance >= threshold 0.3 will be taken as positive samples
neg_distance_thr=0.6, # distance < threshold 0.6 will be taken as positive samples
sample_mod='vote'), # Mode of the sampling method
test_cfg = dict( # Config of testing hyperparameters for votenet
sample_mod='seed', # Mode of the sampling method
nms_thr=0.25, # The threshold to be used during NMS
score_thr=0.8, # Threshold to filter out boxes
per_class_proposal=False)) # Whether to use per_class_proposal
dataset_type = 'ScanNetDataset' # Type of the dataset
data_root = './data/scannet/' # Root path of the data
class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin') # Names of classes
train_pipeline = [ # Training pipeline, refer to mmdet3d.datasets.pipelines for more details
dict(
type='LoadPointsFromFile', # First pipeline to load points, refer to mmdet3d.datasets.pipelines.indoor_loading for more details
shift_height=True, # Whether to use shifted height
load_dim=6, # The dimension of the loaded points
use_dim=[0, 1, 2]), # Which dimensions of the points to be used
dict(
type='LoadAnnotations3D', # Second pipeline to load annotations, refer to mmdet3d.datasets.pipelines.indoor_loading for more details
with_bbox_3d=True, # Whether to load 3D boxes
with_label_3d=True, # Whether to load 3D labels
with_mask_3d=True, # Whether to load 3D instance masks
with_seg_3d=True), # Whether to load 3D semantic masks
dict(
type='PointSegClassMapping', # Declare valid categories, refer to mmdet3d.datasets.pipelines.point_seg_class_mapping for more details
valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
36, 39)),
dict(type='IndoorPointSample', # Sample indoor points, refer to mmdet3d.datasets.pipelines.indoor_sample for more details
num_points=40000), # Number of points to be sampled
dict(type='IndoorFlipData', # Augmentation pipeline that flip points and 3d boxes
flip_ratio_yz=0.5, # Probability of being flipped along yz plane
flip_ratio_xz=0.5), # Probability of being flipped along xz plane
dict(
type='IndoorGlobalRotScale', # Augmentation pipeline that rotate and scale points and 3d boxes, refer to mmdet3d.datasets.pipelines.indoor_augment for more details
shift_height=True, # Whether to use height
rot_range=[-0.027777777777777776, 0.027777777777777776], # Range of rotation
scale_range=None), # Range of scale
dict(
type='DefaultFormatBundle3D', # Default format bundle to gather data in the pipeline, refer to mmdet3d.datasets.pipelines.formating for more details
class_names=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet',
'sink', 'bathtub', 'garbagebin')),
dict(
type='Collect3D', # Pipeline that decides which keys in the data should be passed to the detector, refer to mmdet3d.datasets.pipelines.formating for more details
keys=[
'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
'pts_instance_mask'
])
]
test_pipeline = [ # Testing pipeline, refer to mmdet3d.datasets.pipelines for more details
dict(
type='LoadPointsFromFile', # First pipeline to load points, refer to mmdet3d.datasets.pipelines.indoor_loading for more details
shift_height=True, # Whether to use shifted height
load_dim=6, # The dimension of the loaded points
use_dim=[0, 1, 2]), # Which dimensions of the points to be used
dict(type='IndoorPointSample', # Sample indoor points, refer to mmdet3d.datasets.pipelines.indoor_sample for more details
num_points=40000), # Number of points to be sampled
dict(
type='DefaultFormatBundle3D', # Default format bundle to gather data in the pipeline, refer to mmdet3d.datasets.pipelines.formating for more details
class_names=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet',
'sink', 'bathtub', 'garbagebin')),
dict(type='Collect3D', # Pipeline that decides which keys in the data should be passed to the detector, refer to mmdet3d.datasets.pipelines.formating for more details
keys=['points'])
]
data = dict(
samples_per_gpu=8, # Batch size of a single GPU
workers_per_gpu=4, # Worker to pre-fetch data for each single GPU
train=dict( # Train dataset config
type='RepeatDataset', # Wrapper of dataset, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/dataset_wrappers.py for details.
times=5, # Repeat times
dataset=dict(
type='ScanNetDataset', # Type of dataset
data_root='./data/scannet/', # Root path of the data
ann_file='./data/scannet/scannet_infos_train.pkl', # Ann path of the data
pipeline=[ # pipeline, this is passed by the train_pipeline created before.
dict(
type='LoadPointsFromFile',
shift_height=True,
load_dim=6,
use_dim=[0, 1, 2]),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
with_mask_3d=True,
with_seg_3d=True),
dict(
type='PointSegClassMapping',
valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
28, 33, 34, 36, 39)),
dict(type='IndoorPointSample', num_points=40000),
dict(
type='IndoorFlipData',
flip_ratio_yz=0.5,
flip_ratio_xz=0.5),
dict(
type='IndoorGlobalRotScale',
shift_height=True,
rot_range=[-0.027777777777777776, 0.027777777777777776],
scale_range=None),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture',
'counter', 'desk', 'curtain', 'refrigerator',
'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')),
dict(
type='Collect3D',
keys=[
'points', 'gt_bboxes_3d', 'gt_labels_3d',
'pts_semantic_mask', 'pts_instance_mask'
])
],
filter_empty_gt=False, # Whether to filter ground empty truth boxes
classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet',
'sink', 'bathtub', 'garbagebin'))), # Names of classes
val=dict( # Validation dataset config
type='ScanNetDataset', # Type of dataset
data_root='./data/scannet/', # Root path of the data
ann_file='./data/scannet/scannet_infos_val.pkl', # Ann path of the data
pipeline=[ # Pipeline is passed by test_pipeline created before
dict(
type='LoadPointsFromFile',
shift_height=True,
load_dim=6,
use_dim=[0, 1, 2]),
dict(type='IndoorPointSample', num_points=40000),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture',
'counter', 'desk', 'curtain', 'refrigerator',
'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')),
dict(type='Collect3D', keys=['points'])
],
classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin'), # Names of classes
test_mode=True), # Whether to use test mode
test=dict( # Test dataset config
type='ScanNetDataset', # Type of dataset
data_root='./data/scannet/', # Root path of the data
ann_file='./data/scannet/scannet_infos_val.pkl', # Ann path of the data
pipeline=[ # Pipeline is passed by test_pipeline created before
dict(
type='LoadPointsFromFile',
shift_height=True,
load_dim=6,
use_dim=[0, 1, 2]),
dict(type='IndoorPointSample', num_points=40000),
dict(
type='DefaultFormatBundle3D',
class_names=('cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture',
'counter', 'desk', 'curtain', 'refrigerator',
'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')),
dict(type='Collect3D', keys=['points'])
],
classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin'), # Names of classes
test_mode=True)) # Whether to use test mode
lr = 0.008 # Learning rate of optimizers
optimizer = dict( # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch
type='Adam', # Type of optimizers, # Type of optimizers, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/optimizer/default_constructor.py#L13 for more details
lr=0.008) # Learning rate of optimizers, see detail usages of the parameters in the documentaion of PyTorch
optimizer_config = dict( # Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
grad_clip=dict( # Config used to grad_clip
max_norm=10, # max norm of the gradients
norm_type=2)) # Type of the used p-norm. Can be 'inf' for infinity norm.
lr_config = dict( # Learning rate scheduler config used to register LrUpdater hook
policy='step', # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.
warmup=None, # The warmup policy, also support `exp` and `constant`.
step=[24, 32]) # Steps to decay the learning rate
checkpoint_config = dict( # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
interval=1) # The save interval is 1
log_config = dict( # config to register logger hook
interval=50, # Interval to print the log
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')]) # The logger used to record the training process.
total_epochs = 36 # Total epochs to train the model
dist_params = dict(backend='nccl') # Parameters to setup distributed training, the port can also be set.
log_level = 'INFO' # The level of logging.
find_unused_parameters = True # Whether to find unused parameters
work_dir = None # Directory to save the model checkpoints and logs for the current experiments.
load_from = None # load models as a pre-trained model from a given path. This will not resume training.
resume_from = None # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 36 epochs according to the total_epochs.
gpu_ids = range(0, 1) # ids of gpus
Sometimes, you may set _delete_=True
to ignore some of fields in base configs.
You may refer to mmcv for simple inllustration.
In MMDetection or MMDetection3D, for example, to change the FPN neck of PointPillars with the following config.
model = dict(
type='MVXFasterRCNN',
pts_voxel_layer=dict(...),
pts_voxel_encoder=dict(...),
pts_middle_encoder=dict(...),
pts_backbone=dict(...),
pts_neck=dict(
type='FPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
act_cfg=dict(type='ReLU'),
in_channels=[64, 128, 256],
out_channels=256,
start_level=0,
num_outs=3),
pts_bbox_head=dict(...))
FPN
and SECONDFPN
use different keywords to construct.
_base_ = '../_base_/models/hv_pointpillars_fpn_nus.py'
model = dict(
pts_neck=dict(
_delete_=True,
type='SECONDFPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),
pts_bbox_head=dict(...))
The _delete_=True
would replace all old keys in pts_neck
field with new keys.
Some intermediate variables are used in the configs files, like train_pipeline
/test_pipeline
in datasets.
It's worth noting that when modifying intermediate variables in the children configs, user needs to pass the intermediate variables into corresponding fields again.
For example, we would like to use multi scale strategy to train and test a PointPillars. train_pipeline
/test_pipeline
are intermediate variable we would like modify.
_base_ = './nus-3d.py'
train_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=file_client_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=file_client_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=[0.95, 1.0, 1.05],
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
We first define the new train_pipeline
/test_pipeline
and pass them into data
.