forked from TaoRuijie/ECAPA-TDNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainECAPAModel.py
executable file
·98 lines (82 loc) · 5.31 KB
/
trainECAPAModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
'''
This is the main code of the ECAPATDNN project, to define the parameters and build the construction
'''
import argparse, glob, os, torch, warnings, time
from tools import *
from dataLoader import train_loader
from ECAPAModel import ECAPAModel
parser = argparse.ArgumentParser(description = "ECAPA_trainer")
## Training Settings
parser.add_argument('--num_frames', type=int, default=200, help='Duration of the input segments, eg: 200 for 2 second')
parser.add_argument('--max_epoch', type=int, default=80, help='Maximum number of epochs')
parser.add_argument('--batch_size', type=int, default=400, help='Batch size')
parser.add_argument('--n_cpu', type=int, default=4, help='Number of loader threads')
parser.add_argument('--test_step', type=int, default=1, help='Test and save every [test_step] epochs')
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate')
parser.add_argument("--lr_decay", type=float, default=0.97, help='Learning rate decay every [test_step] epochs')
## Training and evaluation path/lists, save path
parser.add_argument('--train_list', type=str, default="/data08/VoxCeleb2/train_list.txt", help='The path of the training list, https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/train_list.txt')
parser.add_argument('--train_path', type=str, default="/data08/VoxCeleb2/train/wav", help='The path of the training data, eg:"/data08/VoxCeleb2/train/wav" in my case')
parser.add_argument('--eval_list', type=str, default="/data08/VoxCeleb1/veri_test2.txt", help='The path of the evaluation list, veri_test2.txt comes from https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test2.txt')
parser.add_argument('--eval_path', type=str, default="/data08/VoxCeleb1/test/wav", help='The path of the evaluation data, eg:"/data08/VoxCeleb1/test/wav" in my case')
parser.add_argument('--musan_path', type=str, default="/data08/Others/musan_split", help='The path to the MUSAN set, eg:"/data08/Others/musan_split" in my case')
parser.add_argument('--rir_path', type=str, default="/data08/Others/RIRS_NOISES/simulated_rirs", help='The path to the RIR set, eg:"/data08/Others/RIRS_NOISES/simulated_rirs" in my case');
parser.add_argument('--save_path', type=str, default="exps/exp1", help='Path to save the score.txt and models')
parser.add_argument('--initial_model', type=str, default="", help='Path of the initial_model')
## Model and Loss settings
parser.add_argument('--C', type=int, default=1024, help='Channel size for the speaker encoder')
parser.add_argument('--m', type=float, default=0.2, help='Loss margin in AAM softmax')
parser.add_argument('--s', type=float, default=30, help='Loss scale in AAM softmax')
parser.add_argument('--n_class', type=int, default=5994, help='Number of speakers')
## Command
parser.add_argument('--eval', dest='eval', action='store_true', help='Only do evaluation')
## Initialization
warnings.simplefilter("ignore")
torch.multiprocessing.set_sharing_strategy('file_system')
args = parser.parse_args()
args = init_args(args)
## Define the data loader
trainloader = train_loader(**vars(args))
trainLoader = torch.utils.data.DataLoader(trainloader, batch_size = args.batch_size, shuffle = True, num_workers = args.n_cpu, drop_last = True)
## Search for the exist models
modelfiles = glob.glob('%s/model_0*.model'%args.model_save_path)
modelfiles.sort()
## Only do evaluation, the initial_model is necessary
if args.eval == True:
s = ECAPAModel(**vars(args))
print("Model %s loaded from previous state!"%args.initial_model)
s.load_parameters(args.initial_model)
EER, minDCF = s.eval_network(eval_list = args.eval_list, eval_path = args.eval_path)
print("EER %2.2f%%, minDCF %.4f%%"%(EER, minDCF))
quit()
## If initial_model is exist, system will train from the initial_model
if args.initial_model != "":
print("Model %s loaded from previous state!"%args.initial_model)
s = ECAPAModel(**vars(args))
s.load_parameters(args.initial_model)
epoch = 1
## Otherwise, system will try to start from the saved model&epoch
elif len(modelfiles) >= 1:
print("Model %s loaded from previous state!"%modelfiles[-1])
epoch = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][6:]) + 1
s = ECAPAModel(**vars(args))
s.load_parameters(modelfiles[-1])
## Otherwise, system will train from scratch
else:
epoch = 1
s = ECAPAModel(**vars(args))
EERs = []
score_file = open(args.score_save_path, "a+")
while(1):
## Training for one epoch
loss, lr, acc = s.train_network(epoch = epoch, loader = trainLoader)
## Evaluation every [test_step] epochs
if epoch % args.test_step == 0:
s.save_parameters(args.model_save_path + "/model_%04d.model"%epoch)
EERs.append(s.eval_network(eval_list = args.eval_list, eval_path = args.eval_path)[0])
print(time.strftime("%Y-%m-%d %H:%M:%S"), "%d epoch, ACC %2.2f%%, EER %2.2f%%, bestEER %2.2f%%"%(epoch, acc, EERs[-1], min(EERs)))
score_file.write("%d epoch, LR %f, LOSS %f, ACC %2.2f%%, EER %2.2f%%, bestEER %2.2f%%\n"%(epoch, lr, loss, acc, EERs[-1], min(EERs)))
score_file.flush()
if epoch >= args.max_epoch:
quit()
epoch += 1