diff --git a/R/convPairs.R b/R/convPairs.R index 93e28ac..d4f135c 100644 --- a/R/convPairs.R +++ b/R/convPairs.R @@ -46,8 +46,8 @@ #' @importFrom tibble rownames_to_column column_to_rownames convPairs <- function(cells, colPair, - cellType = "cellType", - imageID = "imageID") { + imageID = "imageID", + cellType = "cellType") { all_pairs <- SingleCellExperiment::colPair(cells, colPair) |> dplyr::as_tibble() |> # join the `from` cellType diff --git a/R/spicy.R b/R/spicy.R index a18c26c..571984d 100644 --- a/R/spicy.R +++ b/R/spicy.R @@ -1,52 +1,33 @@ #' Performs spatial tests on spatial cytometry data. #' -#' @param cells -#' A SummarizedExperiment or data frame that contains at least the variables +#' @param cells A SummarizedExperiment or data frame that contains at least the variables #' x and y, giving the location coordinates of each cell, and cellType. -#' @param condition -#' A character specifying which column which contains the condition or `Surv` objects +#' @param condition A character specifying which column which contains the condition or `Surv` objects. #' @param subject Vector of subject IDs corresponding to each image if cells is #' a data frame. #' @param covariates Vector of covariate names that should be included in the #' mixed effects model as fixed effects. -#' @param from -#' vector of cell types which you would like to compare to the to vector -#' @param to -#' vector of cell types which you would like to compare to the from vector -#' @param imageID The image ID if using SingleCellExperiment. -#' @param cellType The cell type if using SingleCellExperiment. -#' @param spatialCoords -#' The spatial coordinates if using a SingleCellExperiment. -#' @param alternateResult -#' An pairwise association statistic between each combination of celltypes in -#' each image. -#' @param verbose logical indicating whether to output messages. -#' @param weights -#' logical indicating whether to include weights based on cell counts. -#' @param weightsByPair -#' logical indicating whether weights should be calculated for each cell type +#' @param from vector of cell types which you would like to compare to the to vector. +#' @param to vector of cell types which you would like to compare to the from vector. +#' @param imageID The name of the imageID column if using a SingleCellExperiment or SpatialExperiment. +#' @param cellType The name of the cellType column if using a SingleCellExperiment or SpatialExperiment. +#' @param spatialCoords The names of the spatialCoords column if using a SingleCellExperiment. +#' @param Rs A vector of the radii that the measures of association should be calculated over. +#' @param sigma A numeric variable used for scaling when fitting inhomogenous L-curves. +#' @param minLambda Minimum value density for scaling when fitting inhomogeneous L-curves. +#' @param weights logical indicating whether to include weights based on cell counts. +#' @param weightsByPair logical indicating whether weights should be calculated for each cell type #' pair. -#' @param weightFactor -#' numeric that controls the convexity of the weight function. -#' @param window -#' Should the window around the regions be 'square', 'convex' or 'concave'. -#' @param window.length -#' A tuning parameter for controlling the level of concavity when estimating -#' concave windows. -#' @param nCores number of cores to use for parallel processing. -#' @param sigma -#' A numeric variable used for scaling when fitting inhomogeneous L-curves. -#' @param minLambda -#' Minimum value for density for scaling when fitting inhomogeneous L-curves. -#' @param Rs -#' A vector of radii that the measures of association should be calculated. If -#' NULL, Rs = c(20, 50, 100) is specified by default. +#' @param weightFactor numeric that controls the convexity of the weight function. +#' @param alternateResult A pairwise association statistic between each combination of celltypes in +#' each image. +#' @param window Should the window around the regions be 'square', 'convex' or 'concave'. +#' @param window.length A tuning parameter for controlling the level of concavity when estimating concave windows. #' @param edgeCorrect A logical indicating whether to perform edge correction. -#' @param includeZeroCells -#' A logical indicating whether to include cells with zero counts in the -#' pairwise association calculation. -#' @param ... Other options. -#' +#' @param includeZeroCells A logical indicating whether to include cells with zero counts in the pairwise association calculation. +#' @param nCores Number of cores to use for parallel processing. +#' @param verbose logical indicating whether to output messages. +#' @param ... Other options #' @return Data frame of p-values. #' @export #' @@ -87,19 +68,19 @@ spicy <- function(cells, imageID = "imageID", cellType = "cellType", spatialCoords = c("x", "y"), - alternateResult = NULL, - verbose = FALSE, + Rs = NULL, + sigma = NULL, + minLambda = 0.05, weights = TRUE, weightsByPair = FALSE, weightFactor = 1, + alternateResult = NULL, window = "convex", window.length = NULL, - nCores = 1, - sigma = NULL, - Rs = NULL, - minLambda = 0.05, edgeCorrect = TRUE, includeZeroCells = FALSE, + nCores = 1, + verbose = FALSE, ...) { BPPARAM <- BiocParallel::MulticoreParam(workers = nCores) @@ -421,34 +402,20 @@ cleanMEM <- function(mixed.lmer, BPPARAM) { #' cellType. #' @param from The 'from' cellType for generating the L curve. #' @param to The 'to' cellType for generating the L curve. -#' @param window -#' Should the window around the regions be 'square', 'convex' or 'concave'. -#' @param window.length -#' A tuning parameter for controlling the level of concavity -#' when estimating concave windows. -#' @param Rs -#' A vector of the radii that the measures of association should be -#' calculated. -#' @param sigma -#' A numeric variable used for scaling when fitting inhomogeneous L-curves. -#' @param minLambda -#' Minimum value for density for scaling when fitting inhomogeneous -#' L-curves. -#' @param edgeCorrect A logical indicating whether to perform edge correction. -#' @param includeZeroCells A logical indicating whether to include cells with -#' zero counts in the pairwise association calculation. -#' @param nCores number of cores to use for parallel processing. #' @param imageID -#' The name of the imageID column if using a SingleCellExperiment or -#' SpatialExperiment. -#' @param cellType -#' The name of the cellType column if using a SingleCellExperiment or -#' SpatialExperiment. -#' @param spatialCoords -#' The names of the spatialCoords column if using a SingleCellExperiment. -#' @return Statistic from pairwise L curve of a single image. -#' -#' +#' The name of the imageID column if using a SingleCellExperiment or SpatialExperiment. +#' @param cellType The name of the cellType column if using a SingleCellExperiment or SpatialExperiment. +#' @param spatialCoords The names of the spatialCoords column if using a SingleCellExperiment. +#' @param Rs A vector of the radii that the measures of association should be calculated over. +#' @param sigma A numeric variable used for scaling when fitting inhomogenous L-curves. +#' @param minLambda Minimum value density for scaling when fitting inhomogeneous L-curves. +#' @param window Should the window around the regions be 'square', 'convex' or 'concave'. +#' @param window.length A tuning parameter for controlling the level of concavity when estimating concave windows. +#' @param edgeCorrect A logical indicating whether to perform edge correction. +#' @param includeZeroCells A logical indicating whether to include cells with zero counts in the pairwise association +#' calculation. +#' @param nCores Number of cores to use for parallel processing. +#' @return Statistic from pairwise L-curve of a single image. #' @examples #' data("diabetesData") #' # Subset by imageID for fast example @@ -463,17 +430,18 @@ getPairwise <- function( cells, from = NULL, to = NULL, - window = "convex", - window.length = NULL, + imageID = "imageID", + cellType = "cellType", + spatialCoords = c("x", "y"), Rs = c(20, 50, 100), sigma = NULL, minLambda = 0.05, + window = "convex", + window.length = NULL, edgeCorrect = TRUE, includeZeroCells = TRUE, - nCores = 1, - imageID = "imageID", - cellType = "cellType", - spatialCoords = c("x", "y")) { + nCores = 1 + ) { BPPARAM <- BiocParallel::MulticoreParam(workers = nCores) if (is(cells, "SummarizedExperiment")) { @@ -1117,7 +1085,11 @@ prepCellSummary <- function( #' @importFrom S4Vectors as.data.frame #' @importFrom ClassifyR colCoxTests colTest <- function( - df, condition, type = NULL, feature = NULL, imageID = "imageID") { + df, + condition, + type = NULL, + feature = NULL, + imageID = "imageID") { if (is(df, "SingleCellExperiment") || is(df, "SpatialExperiment")) { if (is.null(feature)) stop("'feature' is still null")