Skip to content

Syncnetworkteam/RESDSQL

 
 

Repository files navigation



RESDSQL: Decoupling Schema Linking and Skeleton Parsing for Text-to-SQL

This is the official implementation of the paper "RESDSQL: Decoupling Schema Linking and Skeleton Parsing for Text-to-SQL" (AAAI 2023).

If this repository could help you, please cite the following paper:

@inproceedings{li2022resdsql,
  author = {Haoyang Li and Jing Zhang and Cuiping Li and Hong Chen},
  title = "RESDSQL: Decoupling Schema Linking and Skeleton Parsing for Text-to-SQL",
  booktitle = "AAAI",
  year = "2023"
}

Update (2023.3.13): We evaluated our method on a diagnostic evaluation benchmark, Dr.Spider, which contains 17 test sets to measure the robustness of Text-to-SQL parsers under different perturbation perspectives.

Update (2023.5.19): We added support for CSpider, a Chinese Text-to-SQL benchmark with Chinese questions, English database schema, and corresponding SQL queries.

Update (2023.8.28): Please check out our recent work CodeS, a series of Code LLMs (CodeS-1B, CodeS-3B, CodeS-7B, and CodeS-15B) specifically optimized for SQL generation. You can choose the model that best suits your computational resources and application needs to develop your Text-to-SQL parser!!

Overview

We introduce a new Text-to-SQL parser, RESDSQL (Ranking-enhanced Encoding plus a Skeleton-aware Decoding framework for Text-to-SQL), which attempts to decoulpe the schema linking and the skeleton parsing to reduce the difficuty of Text-to-SQL. More details can be found in our paper. All experiments are conducted on a single NVIDIA A100 80G GPU.

Evaluation Results

We evaluate RESDSQL on six benchmarks: Spider, Spider-DK, Spider-Syn, Spider-Realistic, Dr.Spider, and CSpider. We adopt two metrics: Exact-set-Match accuracy (EM) and EXecution accuracy (EX). Let's look at the following numbers:

On Spider:

Model Dev EM Dev EX Test EM Test EX
RESDSQL-3B+NatSQL 80.5% 84.1% 72.0% 79.9%
RESDSQL-3B 78.0% 81.8% - -
RESDSQL-Large+NatSQL 76.7% 81.9% - -
RESDSQL-Large 75.8% 80.1% - -
RESDSQL-Base+NatSQL 74.1% 80.2% - -
RESDSQL-Base 71.7% 77.9% - -

On Spider-DK, Spider-Syn, and Spider-Realistic:

Model DK EM DK EX Syn EM Syn EX Realistic EM Realistic EX
RESDSQL-3B+NatSQL 53.3% 66.0% 69.1% 76.9% 77.4% 81.9%

On Dr.Spider's perturbation sets: Following Dr.Spider, we only report EX for each post-perturbation set and choose PICARD and CodeX as our baseline methods.

Perturbation set PICARD CodeX RESDSQL-3B RESDSQL-3B+NatSQL
DB-Schema-synonym 56.5% 62.0% 63.3% 68.3%
DB-Schema-abbreviation 64.7% 68.6% 64.5% 70.0%
DB-DBcontent-equivalence 43.7% 51.6% 40.3% 40.1%
NLQ-Keyword-synonym 66.3% 55.5% 67.5% 72.4%
NLQ-Keyword-carrier 82.7% 85.2% 86.7% 83.5%
NLQ-Column-synonym 57.2% 54.7% 57.4% 63.1%
NLQ-Column-carrier 64.9% 51.1% 69.9% 63.9%
NLQ-Column-attribute 56.3% 46.2% 58.8% 71.4%
NLQ-Column-value 69.4% 71.4% 73.4% 76.6%
NLQ-Value-synonym 53.0% 59.9% 53.8% 53.2%
NLQ-Multitype 57.1% 53.7% 60.1% 60.7%
NLQ-Others 78.3% 69.7% 77.3% 79.0%
SQL-Comparison 68.0% 66.9% 70.2% 82.0%
SQL-Sort-order 74.5% 57.8% 79.7% 85.4%
SQL-NonDB-number 77.1% 89.3% 83.2% 85.5%
SQL-DB-text 65.1% 72.4% 67.8% 74.3%
SQL-DB-number 85.1% 79.3% 85.4% 88.8%
Average 65.9% 64.4% 68.2% 71.7%

Notice: We also employed the modified test suite script (see this issue) to evaluate the model-generated results, but obtained the same numbers as above. Nevertheless, we suggest that further work should use their modified script to evaluate Dr.Spider.

On CSpider's development set:

Model EM EXEC
RESDSQL-3B+NatSQL 66.3% 81.1%
RESDSQL-Large+NatSQL 64.3% 81.1%
LGESQL + GTL + Electra + QT 64.0% -
LGESQL + ELECTRA + QT 64.5% -
RESDSQL-Base+NatSQL 61.7% 78.1%

Prerequisites

Create a virtual anaconda environment:

conda create -n your_env_name python=3.8.5

Active it and install the cuda version Pytorch:

conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

Install other required modules and tools:

pip install -r requirements.txt
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz
python nltk_downloader.py

Create several folders:

mkdir eval_results
mkdir models
mkdir tensorboard_log
mkdir third_party
mkdir predictions

Clone evaluation scripts:

cd third_party
git clone https://github.com/ElementAI/spider.git
git clone https://github.com/ElementAI/test-suite-sql-eval.git
mv ./test-suite-sql-eval ./test_suite
cd ..

Prepare data

Download data (including Spider, Spider-DK, Spider-Syn, Spider-Realistic, Dr.Spider, and CSpider) and database and then unzip them:

unzip data.zip
unzip database.zip

Notice: Dr.Spider has been preprocessed following the instructions on its Github page.

Inference

All evaluation results can be easily reproduced through our released scripts and checkpionts.

Step1: Prepare Checkpoints

Because RESDSQL is a two-stage algorithm, therefore, you should first download cross-encoder checkpoints. Here are links:

Cross-encoder Checkpoints Google Drive Baidu Netdisk
text2natsql_schema_item_classifier Link Link (pwd: 18w8)
text2sql_schema_item_classifier Link Link (pwd: dr62)
xlm_roberta_text2natsql_schema_item_classifier (trained on CSpider) - Link (pwd: 3sdu)

Then, you should download T5 (for Spider) or mT5 (for CSpider) checkpoints:

T5/mT5 Checkpoints Google Drive/OneDrive Baidu Netdisk
text2natsql-t5-3b OneDrive link Link (pwd: 4r98)
text2sql-t5-3b Google Drive link Link (pwd: sc62)
text2natsql-t5-large Google Drive link Link (pwd: 7iyq)
text2sql-t5-large Google Drive link Link (pwd: q58k)
text2natsql-t5-base Google Drive link Link (pwd: pyxf)
text2sql-t5-base Google Drive link Link (pwd: wuek)
text2natsql-mt5-xl-cspider (trained on CSpider) - Link (pwd: y7ei)
text2natsql-mt5-large-cspider (trained on CSpider) - Link (pwd: ydqk)
text2natsql-mt5-base-cspider (trained on CSpider) - Link (pwd: d8b8)

The checkpoints should be placed in the models folder.

For CSpider, we only provide the NatSQL version because its performance is better than SQL in our pre-experiments. To support CSpider, we replace roberta-large with xlm-roberta-large in the first stage and replace t5 with mt5 in the second stage.

Step2: Run Inference

The inference scripts are located in scripts/inference. Concretely, infer_text2natsql.sh is the inference script of RESDSQL-{Base, Large, 3B}+NatSQL, and infer_text2sql.sh is the inference script of RESDSQL-{Base, Large, 3B}. For example, you can run the inference of RESDSQL-3B+NatSQL on Spider's dev set via:

sh scripts/inference/infer_text2natsql.sh 3b spider

The first argument (model scale) can be selected from [base, large, 3b] and the second argument (dataset name) can be selected from [spider, spider-realistic, spider-syn, spider-dk, DB_schema_synonym, DB_schema_abbreviation, DB_DBcontent_equivalence, NLQ_keyword_synonym, NLQ_keyword_carrier, NLQ_column_synonym, NLQ_column_carrier, NLQ_column_attribute, NLQ_column_value, NLQ_value_synonym, NLQ_multitype, NLQ_others, SQL_comparison, SQL_sort_order, SQL_NonDB_number, SQL_DB_text, SQL_DB_number].

The predicted SQL queries are recorded in predictions/{dataset_name}/{model_name}/pred.sql.

Inference on CSpider's Dev Set (New Feature) We also provide inference scripts to run RESDSQL-{Base, Large, 3B}+NatSQL on CSpider's development set. Here is an example:

sh scripts/inference/infer_text2natsql_cspider.sh 3b

The first argument (model scale) can be selected from [base, large, 3b].

Training on Spider

We provide scripts in scripts/train/text2natsql and scripts/train/text2sql to train RESDSQL on Spider's training set and evaluate on Spider's dev set.

RESDSQL-{Base, Large, 3B}+NatSQL

# Step1: preprocess dataset
sh scripts/train/text2natsql/preprocess.sh
# Step2: train cross-encoder
sh scripts/train/text2natsql/train_text2natsql_schema_item_classifier.sh
# Step3: prepare text-to-natsql training and development set for T5
sh scripts/train/text2natsql/generate_text2natsql_dataset.sh
# Step4: fine-tune T5-3B (RESDSQL-3B+NatSQL)
sh scripts/train/text2natsql/train_text2natsql_t5_3b.sh
# Step4: (or) fine-tune T5-Large (RESDSQL-Large+NatSQL)
sh scripts/train/text2natsql/train_text2natsql_t5_large.sh
# Step4: (or) fine-tune T5-Base (RESDSQL-Base+NatSQL)
sh scripts/train/text2natsql/train_text2natsql_t5_base.sh

RESDSQL-{Base, Large, 3B}

# Step1: preprocess dataset
sh scripts/train/text2sql/preprocess.sh
# Step2: train cross-encoder
sh scripts/train/text2sql/train_text2sql_schema_item_classifier.sh
# Step3: prepare text-to-sql training and development set for T5
sh scripts/train/text2sql/generate_text2sql_dataset.sh
# Step4: fine-tune T5-3B (RESDSQL-3B)
sh scripts/train/text2sql/train_text2sql_t5_3b.sh
# Step4: (or) fine-tune T5-Large (RESDSQL-Large)
sh scripts/train/text2sql/train_text2sql_t5_large.sh
# Step4: (or) fine-tune T5-Base (RESDSQL-Base)
sh scripts/train/text2sql/train_text2sql_t5_base.sh

During training, the cross-encoder (i.e., the first stage) always keeps the best checkpoint, but T5 (i.e., the second stage) keeps all the intermediate checkpoints, because different test sets may achieve the best Text-to-SQL performance on different checkpoints. Therefore, given a test set, we need to evaluate all the intermediate checkpoints and compare their performance to find the best checkpoint. The evaluation results of checkpoints are saved in eval_results.

Our paper also report the performence of RESDSQL-3B+NatSQL (the most powerful version of RESDSQL) on Spider-DK, Spider-Syn, and Spider-Realistic. To obtain results on these datasets, we provide evaluation scripts in scripts/evaluate_robustness. Here is an example for Spider-DK:

# Step1: preprocess Spider-DK
sh scripts/evaluate_robustness/preprocess_spider_dk.sh
# Step2: Run evaluation on Spider-DK
sh scripts/evaluate_robustness/evaluate_on_spider_dk.sh

Training on CSpider

We additionally provide scripts in scripts/train/cspider_text2natsql and scripts/train/cspider_text2sql to train RESDSQL on CSpider's training set and evaluate on CSpider's dev set.

RESDSQL-{Base, Large, 3B}+NatSQL (CSpider version)

# Step1: preprocess CSpider
sh scripts/train/cspider_text2natsql/preprocess.sh
# Step2: train cross-encoder
sh scripts/train/cspider_text2natsql/train_text2natsql_schema_item_classifier.sh
# Step3: prepare text-to-natsql training and development set for mT5
sh scripts/train/cspider_text2natsql/generate_text2natsql_dataset.sh
# Step4: fine-tune mT5-XL (RESDSQL-3B+NatSQL)
sh scripts/train/cspider_text2natsql/train_text2natsql_mt5_xl.sh
# Step4: (or) fine-tune mT5-Large (RESDSQL-Large+NatSQL)
sh scripts/train/cspider_text2natsql/train_text2natsql_mt5_large.sh
# Step4: (or) fine-tune mT5-Base (RESDSQL-Base+NatSQL)
sh scripts/train/cspider_text2natsql/train_text2natsql_mt5_base.sh

In order to train the NatSQL version on CSpider, we manually aligned and modified annotations of NatSQL. The aligned files are also released, see NatSQL/NatSQLv1_6/train_cspider-natsql.json and NatSQL/NatSQLv1_6/dev_cspider-natsql.json.

RESDSQL-{Base, Large, 3B} (CSpider version)

# Step1: preprocess CSpider
sh scripts/train/cspider_text2sql/preprocess.sh
# Step2: train cross-encoder
sh scripts/train/cspider_text2sql/train_text2sql_schema_item_classifier.sh
# Step3: prepare text-to-sql training and development set for mT5
sh scripts/train/cspider_text2sql/generate_text2sql_dataset.sh
# Step4: fine-tune mT5-XL (RESDSQL-3B)
sh scripts/train/cspider_text2sql/train_text2sql_mt5_xl.sh
# Step4: (or) fine-tune mT5-Large (RESDSQL-Large)
sh scripts/train/cspider_text2sql/train_text2sql_mt5_large.sh
# Step4: (or) fine-tune mT5-Base (RESDSQL-Base)
sh scripts/train/cspider_text2sql/train_text2sql_mt5_base.sh

Acknowledgements

We would thanks to Hongjin Su and Tao Yu for their help in evaluating our method on Spider's test set. We would also thanks to PICARD (paper, code), NatSQL (paper, code), Spider (paper, dataset), Spider-DK (paper, dataset), Spider-Syn (paper, dataset), Spider-Realistic (paper, dataset), Dr.Spider (paper, dataset), and CSpider (paper, dataset) for their interesting work and open-sourced code and dataset.

About

The Pytorch implementation of RESDSQL (AAAI 2023).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.7%
  • Shell 6.3%