We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
python train.py
hyper-patameters: HParams(vocab_size=7024, pad_idx=0, bos_idx=3, emb_size=256, hidden_size=512, context_size=512, latent_size=256, factor_emb_size=64, n_class1=3, n_class2=2, key_len=4, sens_num=4, sen_len=9, poem_len=30, batch_size=128, drop_ratio=0.15, weight_decay=0.00025, clip_grad_norm=2.0, max_lr=0.0008, min_lr=5e-08, warmup_steps=6000, ndis=3, min_tr=0.85, burn_down_tr=3, decay_tr=6, tau_annealing_steps=6000, min_tau=0.01, rec_warm_steps=1500, noise_decay_steps=8500, log_steps=200, sample_num=1, max_epoches=12, save_epoches=3, validate_epoches=1, fbatch_size=64, fmax_epoches=3, fsave_epoches=1, vocab_path='../corpus/vocab.pickle', ivocab_path='../corpus/ivocab.pickle', train_data='../corpus/semi_train.pickle', valid_data='../corpus/semi_valid.pickle', model_dir='../checkpoint/', data_dir='../data/', train_log_path='../log/mix_train_log.txt', valid_log_path='../log/mix_valid_log.txt', fig_log_path='../log/', corrupt_ratio=0.1, dae_epoches=10, dae_batch_size=128, dae_max_lr=0.0008, dae_min_lr=5e-08, dae_warmup_steps=4500, dae_min_tr=0.85, dae_burn_down_tr=2, dae_decay_tr=6, dae_log_steps=300, dae_validate_epoches=1, dae_save_epoches=2, dae_train_log_path='../log/dae_train_log.txt', dae_valid_log_path='../log/dae_valid_log.txt', cl_batch_size=64, cl_epoches=10, cl_max_lr=0.0008, cl_min_lr=5e-08, cl_warmup_steps=800, cl_log_steps=100, cl_validate_epoches=1, cl_save_epoches=2, cl_train_log_path='../log/cl_train_log.txt', cl_valid_log_path='../log/cl_valid_log.txt') please check the hyper-parameters, and then press any key to continue >ok ok dae pretraining... layers.embed.weight torch.Size([7024, 256]) layers.encoder.rnn.weight_ih_l0 torch.Size([1536, 256]) layers.encoder.rnn.weight_hh_l0 torch.Size([1536, 512]) layers.encoder.rnn.bias_ih_l0 torch.Size([1536]) layers.encoder.rnn.bias_hh_l0 torch.Size([1536]) layers.encoder.rnn.weight_ih_l0_reverse torch.Size([1536, 256]) layers.encoder.rnn.weight_hh_l0_reverse torch.Size([1536, 512]) layers.encoder.rnn.bias_ih_l0_reverse torch.Size([1536]) layers.encoder.rnn.bias_hh_l0_reverse torch.Size([1536]) layers.decoder.rnn.weight_ih_l0 torch.Size([1536, 512]) layers.decoder.rnn.weight_hh_l0 torch.Size([1536, 512]) layers.decoder.rnn.bias_ih_l0 torch.Size([1536]) layers.decoder.rnn.bias_hh_l0 torch.Size([1536]) layers.word_encoder.rnn.weight_ih_l0 torch.Size([256, 256]) layers.word_encoder.rnn.weight_hh_l0 torch.Size([256, 256]) layers.word_encoder.rnn.bias_ih_l0 torch.Size([256]) layers.word_encoder.rnn.bias_hh_l0 torch.Size([256]) layers.word_encoder.rnn.weight_ih_l0_reverse torch.Size([256, 256]) layers.word_encoder.rnn.weight_hh_l0_reverse torch.Size([256, 256]) layers.word_encoder.rnn.bias_ih_l0_reverse torch.Size([256]) layers.word_encoder.rnn.bias_hh_l0_reverse torch.Size([256]) layers.out_proj.weight torch.Size([7024, 512]) layers.out_proj.bias torch.Size([7024]) layers.map_x.mlp.linear_0.weight torch.Size([512, 768]) layers.map_x.mlp.linear_0.bias torch.Size([512]) layers.context.conv.weight torch.Size([512, 512, 3]) layers.context.conv.bias torch.Size([512]) layers.context.linear.weight torch.Size([512, 1024]) layers.context.linear.bias torch.Size([512]) layers.dec_init_pre.mlp.linear_0.weight torch.Size([506, 1536]) layers.dec_init_pre.mlp.linear_0.bias torch.Size([506]) params num: 31 building data for dae... 193461 34210 train batch num: 1512 valid batch num: 268 Traceback (most recent call last): File "train.py", line 79, in main() File "train.py", line 74, in main pretrain(mixpoet, tool, hps) File "train.py", line 30, in pretrain dae_trainer.train(mixpoet, tool) File "/content/MixPoet/codes/dae_trainer.py", line 137, in train self.run_train(mixpoet, tool, optimizer, logger) File "/content/MixPoet/codes/dae_trainer.py", line 83, in run_train batch_keys, batch_poems, batch_dec_inps, batch_lengths) File "/content/MixPoet/codes/dae_trainer.py", line 58, in run_step mixpoet.dae_graph(keys, poems, dec_inps, lengths) File "/content/MixPoet/codes/graphs.py", line 337, in dae_graph _, poem_state0 = self.computer_enc(poems, self.layers['encoder']) File "/content/MixPoet/codes/graphs.py", line 232, in computer_enc enc_outs, enc_state = encoder(emb_inps, lengths) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/content/MixPoet/codes/layers.py", line 59, in forward input_lens, batch_first=True, enforce_sorted=False) File "/usr/local/lib/python3.7/dist-packages/torch/nn/utils/rnn.py", line 249, in pack_padded_sequence _VF._pack_padded_sequence(input, lengths, batch_first) RuntimeError: 'lengths' argument should be a 1D CPU int64 tensor, but got 1D cuda:0 Long tensor
The text was updated successfully, but these errors were encountered:
You can change the following
packed = torch.nn.utils.rnn.pack_padded_sequence(embed_inps, input_lens, batch_first=True, enforce_sorted=False)
in file layer.py line 56 to
layer.py
packed = torch.nn.utils.rnn.pack_padded_sequence(embed_inps, input_lens.cpu(), batch_first=True, enforce_sorted=False)
I think this is a bug introduced when you are using a newer version of PyTorch.
Sorry, something went wrong.
No branches or pull requests
python train.py
hyper-patameters:
HParams(vocab_size=7024, pad_idx=0, bos_idx=3, emb_size=256, hidden_size=512, context_size=512, latent_size=256, factor_emb_size=64, n_class1=3, n_class2=2, key_len=4, sens_num=4, sen_len=9, poem_len=30, batch_size=128, drop_ratio=0.15, weight_decay=0.00025, clip_grad_norm=2.0, max_lr=0.0008, min_lr=5e-08, warmup_steps=6000, ndis=3, min_tr=0.85, burn_down_tr=3, decay_tr=6, tau_annealing_steps=6000, min_tau=0.01, rec_warm_steps=1500, noise_decay_steps=8500, log_steps=200, sample_num=1, max_epoches=12, save_epoches=3, validate_epoches=1, fbatch_size=64, fmax_epoches=3, fsave_epoches=1, vocab_path='../corpus/vocab.pickle', ivocab_path='../corpus/ivocab.pickle', train_data='../corpus/semi_train.pickle', valid_data='../corpus/semi_valid.pickle', model_dir='../checkpoint/', data_dir='../data/', train_log_path='../log/mix_train_log.txt', valid_log_path='../log/mix_valid_log.txt', fig_log_path='../log/', corrupt_ratio=0.1, dae_epoches=10, dae_batch_size=128, dae_max_lr=0.0008, dae_min_lr=5e-08, dae_warmup_steps=4500, dae_min_tr=0.85, dae_burn_down_tr=2, dae_decay_tr=6, dae_log_steps=300, dae_validate_epoches=1, dae_save_epoches=2, dae_train_log_path='../log/dae_train_log.txt', dae_valid_log_path='../log/dae_valid_log.txt', cl_batch_size=64, cl_epoches=10, cl_max_lr=0.0008, cl_min_lr=5e-08, cl_warmup_steps=800, cl_log_steps=100, cl_validate_epoches=1, cl_save_epoches=2, cl_train_log_path='../log/cl_train_log.txt', cl_valid_log_path='../log/cl_valid_log.txt')
please check the hyper-parameters, and then press any key to continue >ok
ok
dae pretraining...
layers.embed.weight torch.Size([7024, 256])
layers.encoder.rnn.weight_ih_l0 torch.Size([1536, 256])
layers.encoder.rnn.weight_hh_l0 torch.Size([1536, 512])
layers.encoder.rnn.bias_ih_l0 torch.Size([1536])
layers.encoder.rnn.bias_hh_l0 torch.Size([1536])
layers.encoder.rnn.weight_ih_l0_reverse torch.Size([1536, 256])
layers.encoder.rnn.weight_hh_l0_reverse torch.Size([1536, 512])
layers.encoder.rnn.bias_ih_l0_reverse torch.Size([1536])
layers.encoder.rnn.bias_hh_l0_reverse torch.Size([1536])
layers.decoder.rnn.weight_ih_l0 torch.Size([1536, 512])
layers.decoder.rnn.weight_hh_l0 torch.Size([1536, 512])
layers.decoder.rnn.bias_ih_l0 torch.Size([1536])
layers.decoder.rnn.bias_hh_l0 torch.Size([1536])
layers.word_encoder.rnn.weight_ih_l0 torch.Size([256, 256])
layers.word_encoder.rnn.weight_hh_l0 torch.Size([256, 256])
layers.word_encoder.rnn.bias_ih_l0 torch.Size([256])
layers.word_encoder.rnn.bias_hh_l0 torch.Size([256])
layers.word_encoder.rnn.weight_ih_l0_reverse torch.Size([256, 256])
layers.word_encoder.rnn.weight_hh_l0_reverse torch.Size([256, 256])
layers.word_encoder.rnn.bias_ih_l0_reverse torch.Size([256])
layers.word_encoder.rnn.bias_hh_l0_reverse torch.Size([256])
layers.out_proj.weight torch.Size([7024, 512])
layers.out_proj.bias torch.Size([7024])
layers.map_x.mlp.linear_0.weight torch.Size([512, 768])
layers.map_x.mlp.linear_0.bias torch.Size([512])
layers.context.conv.weight torch.Size([512, 512, 3])
layers.context.conv.bias torch.Size([512])
layers.context.linear.weight torch.Size([512, 1024])
layers.context.linear.bias torch.Size([512])
layers.dec_init_pre.mlp.linear_0.weight torch.Size([506, 1536])
layers.dec_init_pre.mlp.linear_0.bias torch.Size([506])
params num: 31
building data for dae...
193461
34210
train batch num: 1512
valid batch num: 268
Traceback (most recent call last):
File "train.py", line 79, in
main()
File "train.py", line 74, in main
pretrain(mixpoet, tool, hps)
File "train.py", line 30, in pretrain
dae_trainer.train(mixpoet, tool)
File "/content/MixPoet/codes/dae_trainer.py", line 137, in train
self.run_train(mixpoet, tool, optimizer, logger)
File "/content/MixPoet/codes/dae_trainer.py", line 83, in run_train
batch_keys, batch_poems, batch_dec_inps, batch_lengths)
File "/content/MixPoet/codes/dae_trainer.py", line 58, in run_step
mixpoet.dae_graph(keys, poems, dec_inps, lengths)
File "/content/MixPoet/codes/graphs.py", line 337, in dae_graph
_, poem_state0 = self.computer_enc(poems, self.layers['encoder'])
File "/content/MixPoet/codes/graphs.py", line 232, in computer_enc
enc_outs, enc_state = encoder(emb_inps, lengths)
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/content/MixPoet/codes/layers.py", line 59, in forward
input_lens, batch_first=True, enforce_sorted=False)
File "/usr/local/lib/python3.7/dist-packages/torch/nn/utils/rnn.py", line 249, in pack_padded_sequence
_VF._pack_padded_sequence(input, lengths, batch_first)
RuntimeError: 'lengths' argument should be a 1D CPU int64 tensor, but got 1D cuda:0 Long tensor
The text was updated successfully, but these errors were encountered: