-
Notifications
You must be signed in to change notification settings - Fork 6
/
functions.py
445 lines (390 loc) · 20.4 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import string
import pandas as pd
import numpy as np
from babel.numbers import format_currency
# Function to convert currency into Rupee format
def in_rupees(curr):
curr_str = format_currency(curr, 'INR', locale='en_IN').replace(u'\xa0', u' ')
return(remove_decimal(curr_str))
def remove_decimal(S):
S = str(S)
S = S[:-3]
return S
def col2num(col):
num = 0
for c in col:
if c in string.ascii_letters:
num = num * 26 + (ord(c.upper()) - ord('A')) + 1
return num
# Function to reshape an array to a single colums matrix
def re_shape(input_vec):
output_vec = input_vec.reshape(input_vec.shape[0], 1)
return output_vec
# Function to extract data from the Supply Use Table excel file
def import_Excel_SUT(filename, sheet_name_sup, sheet_name_use, sheet_name_rates,
sheet_name_exempt, sheet_name_reg_ratio):
# First prepare the Excel file by Selecting the entire sheet and unmerging any merged cells
'''
SUPPLY table
'''
df_supply = pd.read_excel(filename, sheet_name_sup, index_col=False,
header=None)
df_supply.fillna(0, inplace=True)
supply_mat_start_col_excel="C"
supply_mat_end_col_excel = "BP"
supply_mat_start_col = col2num(supply_mat_start_col_excel)
supply_mat_end_col=col2num(supply_mat_end_col_excel)
supply_mat_start_row=4
supply_mat_end_row=143
supply_mat = df_supply.iloc[supply_mat_start_row-1:supply_mat_end_row,
supply_mat_start_col-1:supply_mat_end_col]
supply_mat = supply_mat.values
supply_col_product_id_excel = "B"
supply_col_product_id = col2num(supply_col_product_id_excel)
supply_row_industry_id = 2
# Import Vector
import_col_excel = "BX"
import_col = col2num(import_col_excel)
import_vec = df_supply.iloc[supply_mat_start_row-1:supply_mat_end_row,import_col-1]
import_vec = import_vec.values
# Trade & Transport Margin Vector
trade_margin_col_excel = "BZ"
trade_margin_col = col2num(trade_margin_col_excel)
trade_margin_vec = df_supply.iloc[supply_mat_start_row-1:supply_mat_end_row,trade_margin_col-1]
trade_margin_vec = trade_margin_vec.values
# Product tax less subsidies Vector
tax_subsidies_col_excel = "BR"
tax_subsidies_col = col2num(tax_subsidies_col_excel)
tax_subsidies_vec = df_supply.iloc[supply_mat_start_row-1:supply_mat_end_row,tax_subsidies_col-1]
tax_subsidies_vec = tax_subsidies_vec.values
product_header = df_supply.iloc[supply_mat_start_row-1:supply_mat_end_row, supply_col_product_id-2:supply_col_product_id]
product_header = product_header.values
industry_header = df_supply.iloc[supply_row_industry_id-1, supply_mat_start_col-1:supply_mat_end_col]
industry_header = industry_header.values
# Product Header Dataframe to ensure rates are correctly matched
df_product = pd.DataFrame(data = product_header, columns = np.array(['srl_no', 'product_id']))
df_product['srl_no'] = df_product['srl_no'].astype(str)
'''
USE table
'''
df_use = pd.read_excel(filename, sheet_name_use, index_col=False,
header=None)
df_use.fillna(0, inplace=True)
use_mat_start_col_excel="C"
use_mat_end_col_excel="BP"
use_mat_start_col=col2num(use_mat_start_col_excel)
use_mat_end_col=col2num(use_mat_end_col_excel)
use_mat_start_row=4
use_mat_end_row=143
use_mat = df_use.iloc[use_mat_start_row-1:use_mat_end_row,
use_mat_start_col-1:use_mat_end_col]
use_mat = use_mat.values
# Public final consumption Vector
fin_cons_hh_col_excel = "BR"
fin_cons_hh_col = col2num(fin_cons_hh_col_excel)
fin_cons_hh_vec = df_use.iloc[use_mat_start_row-1:use_mat_end_row,
fin_cons_hh_col-1]
fin_cons_hh_vec = fin_cons_hh_vec.values
# Govt. final consumption Vector
fin_cons_gov_col_excel = "BS"
fin_cons_gov_col = col2num(fin_cons_gov_col_excel)
fin_cons_gov_vec = df_use.iloc[use_mat_start_row-1:use_mat_end_row,
fin_cons_gov_col-1]
fin_cons_gov_vec = fin_cons_gov_vec.values
# Gross capital formation Vector
gfcf_col_excel ="BT"
gfcf_col = col2num(gfcf_col_excel)
gfcf_vec = df_use.iloc[use_mat_start_row-1:use_mat_end_row,gfcf_col-1]
gfcf_vec = gfcf_vec.values
# Valuables Vector
vlbl_col_excel ="BU"
vlbl_col = col2num(vlbl_col_excel)
vlbl_vec = df_use.iloc[use_mat_start_row-1:use_mat_end_row,vlbl_col-1]
vlbl_vec = vlbl_vec.values
# Change in stocks Vector
cis_col_excel ="BV"
cis_col = col2num(cis_col_excel)
cis_vec = df_use.iloc[use_mat_start_row-1:use_mat_end_row,cis_col-1]
cis_vec = cis_vec.values
# Export Vector
export_col_excel = "BW"
export_col = col2num(export_col_excel)
export_vec = df_use.iloc[use_mat_start_row-1:use_mat_end_row,export_col-1]
export_vec = export_vec.values
'''
GST Rates table
'''
df_rates = pd.read_excel(filename, sheet_name_rates, index_col=False,
header=0)
df_rates.fillna(0, inplace=True)
df_rates['weighted_rates'] = df_rates['rates'] * df_rates['weight']
df_rates = df_rates.groupby(['srl_no'])["weighted_rates"].sum()
df_rates = df_rates.reset_index()
df_rates = df_rates.values
df_rates = pd.DataFrame(data = df_rates, columns = np.array(['srl_no', 'rates']))
df_rates['srl_no'] = df_rates['srl_no'].astype(int)
df_rates['srl_no'] = df_rates['srl_no'].astype(str)
df_rates = pd.merge(df_rates, df_product,
how="inner", on="srl_no")
df_rates = df_rates[['product_id', 'rates']]
rate_vec = df_rates['rates'].values
'''
Exempt Supply vector
'''
df_exempt = pd.read_excel(filename, sheet_name_exempt, index_col=False,
header=0)
df_exempt.fillna(0, inplace=True)
df_exempt = df_exempt[['product_id', 'exempt']]
# merge with product id to ensure that the rates are correctly matched
df_exempt = pd.merge(df_product, df_exempt,
how="inner", on="product_id")
exempt_vec = df_exempt['exempt'].values
'''
GST Registered Ratio by Industry
'''
df_gst_reg_ratio = pd.read_excel(filename, sheet_name_reg_ratio, index_col=False)
industry_group_header = df_gst_reg_ratio['industry_group'].values
gst_reg_ratio_ind_vec = df_gst_reg_ratio['gst_reg_ratio'].values
return (supply_mat, tax_subsidies_vec, import_vec, trade_margin_vec,
industry_header, df_product, use_mat, fin_cons_hh_vec,
fin_cons_gov_vec, gfcf_vec, vlbl_vec, cis_vec, export_vec,
gst_reg_ratio_ind_vec, industry_group_header, rate_vec, exempt_vec)
# Function to blow up the values with a blow_up factor
def blow_up_mat(supply_mat, use_mat, import_vec, trade_margin_vec, tax_subsidies_vec,
export_vec, fin_cons_hh_vec, fin_cons_gov_vec, gfcf_vec, vlbl_vec,
cis_vec, blow_up_factor):
supply_mat *= blow_up_factor
use_mat *= blow_up_factor
import_vec *= blow_up_factor
trade_margin_vec *= blow_up_factor
tax_subsidies_vec *= blow_up_factor
export_vec *= blow_up_factor
fin_cons_hh_vec *= blow_up_factor
fin_cons_gov_vec *= blow_up_factor
gfcf_vec *= blow_up_factor
vlbl_vec *= blow_up_factor
cis_vec *= blow_up_factor
return (supply_mat, use_mat, import_vec, trade_margin_vec,
tax_subsidies_vec, export_vec, fin_cons_hh_vec,
fin_cons_gov_vec, gfcf_vec, vlbl_vec, cis_vec)
# Function to adjust supplies to taxpayers only to those who are registered
def adjusted_SUT(gst_reg_ratio_ind_vec, input_mat):
adj_input_mat = gst_reg_ratio_ind_vec*input_mat
return adj_input_mat
# Function to compute the output tax
def calc_output_tax(supply_mat, rate_vec):
output_tax_mat = supply_mat * rate_vec
return output_tax_mat
# Function to compute the ratio of ITC disallowed
def calc_itc_disallowed_ratio(supply_mat, exempt_vec):
exempt_supply_mat = supply_mat * exempt_vec
exempt_supply_ind_vec = calc_sum_by_industry(exempt_supply_mat)
supply_ind_vec = calc_sum_by_industry(supply_mat)
itc_disallowed_ratio = np.divide(exempt_supply_ind_vec, supply_ind_vec,
out=np.zeros_like(exempt_supply_ind_vec), where=supply_ind_vec!=0)
return (itc_disallowed_ratio, exempt_supply_mat)
# Function to compute the ITC disallowed
def calc_itc_disallowed(input_tax_credit_vec, itc_disallowed_ratio):
itc_disallowed_vec = input_tax_credit_vec * itc_disallowed_ratio
return itc_disallowed_vec
def calc_input_tax_credit(use_mat, rate_vec):
input_tax_credit_mat = use_mat * rate_vec
return input_tax_credit_mat
# Function to get the industry wise total of a variable (i.e supply, use, tax etc)
def calc_sum_by_industry(input_mat):
output_vec = input_mat.sum(axis=0)
output_vec = output_vec.reshape(1, output_vec.shape[0])
return output_vec
# Function to get the commodity wise total of a variable (i.e supply, use, tax etc)
def calc_sum_by_commodity(input_mat):
output_vec = input_mat.sum(axis=1)
output_vec = output_vec.reshape(output_vec.shape[0], 1)
return output_vec
# Function to calculate the ratio for allocating imports/exports/taxes/subsidies of a product to each industry
def calc_allocation_ratio(input_mat):
sum_by_prod_vec = input_mat.sum(axis=1)
sum_by_prod_vec = sum_by_prod_vec.reshape(sum_by_prod_vec.shape[0],1)
# dividing use_mat by iiuse_vec while avoiding zero by zero
output_mat = np.divide(input_mat, sum_by_prod_vec,
out=np.zeros_like(input_mat), where=sum_by_prod_vec!=0)
return output_mat
# Function to calculate the ratio for allocating values of a product to each industry based on adjusted use matrix
def calc_allocation_by_use(use_mat, fin_cons_hh_vec ,fin_cons_gov_vec , gfcf_vec, vlbl_vec, cis_vec):
use_comm_vec = calc_sum_by_commodity(use_mat)
dom_use_vec = use_comm_vec + fin_cons_hh_vec + fin_cons_gov_vec + gfcf_vec + vlbl_vec + cis_vec
use_vec_ratio = use_comm_vec / dom_use_vec
fin_cons_hh_vec_ratio = fin_cons_hh_vec/ dom_use_vec
fin_cons_gov_vec_ratio = fin_cons_gov_vec/ dom_use_vec
gfcf_vec_ratio = gfcf_vec/ dom_use_vec
vlbl_vec_ratio = vlbl_vec/dom_use_vec
cis_vec_ratio = cis_vec/dom_use_vec
return (use_vec_ratio, fin_cons_hh_vec_ratio, fin_cons_gov_vec_ratio, gfcf_vec_ratio, vlbl_vec_ratio,
cis_vec_ratio)
# Function to allocate imports/exports/taxes/subsidies of a product to each industry proportionately
def calc_allocation_to_industry(allocation_mat, input_vec):
output_mat = allocation_mat * input_vec
return output_mat
# Function to calculate GST on imports
def calc_GST_on_imports(use_mat, import_vec, rate_vec):
allocation_ratio_by_use_mat = calc_allocation_ratio(use_mat)
import_mat = calc_allocation_to_industry(allocation_ratio_by_use_mat, import_vec)
GST_on_imports_mat = import_mat * rate_vec
GST_on_imports_ind_vec = calc_sum_by_industry(GST_on_imports_mat)
tot_GST_on_imports = GST_on_imports_ind_vec.sum()
return (GST_on_imports_ind_vec, tot_GST_on_imports)
# Function to export a vector by industry to a csv file
def make_ind_vec_df(input_vec, industry_header, output):
input_vec = input_vec.reshape(input_vec.shape[1], 1)
ind_df = pd.DataFrame(data=input_vec, index=industry_header, columns=np.array([output]))
ind_df = ind_df.reset_index()
ind_df = ind_df.rename(columns={'index':'industry_id'})
file_name = "Output_csv\\" + output + ".csv"
ind_df.to_csv(file_name)
return ind_df
# Function to export a vector by product to a csv file
def make_comm_vec_df(input_vec, df_product, output):
input_vec = input_vec.reshape(input_vec.shape[0], 1)
ind_df = pd.DataFrame(data=input_vec, index=df_product['srl_no'], columns=np.array([output]))
ind_df = ind_df.reset_index()
ind_df = ind_df.rename(columns={'index':'srl_no'})
ind_df = pd.merge(df_product, ind_df,
how="inner", on="srl_no")
file_name = "Output_csv\\" + output + ".csv"
ind_df.to_csv(file_name, index=False)
return ind_df
# Function to export a matrix to a csv file by converting it into vector by industry
def make_mat_ind_df(input_mat, industry_header, output):
input_vec = calc_sum_by_industry(input_mat)
make_ind_vec_df(input_vec, industry_header, output)
# Function to export a matrix to a csv file by converting it into vector by industry
def make_mat_df(input_mat, df_product, industry_header, output):
#input_mat = input_vec.reshape(input_vec.shape[0], 1)
ind_df = pd.DataFrame(data=input_mat, index=df_product['srl_no'], columns=np.array(industry_header))
ind_df = ind_df.reset_index()
#ind_df = ind_df.rename(columns={'index':'srl_no'})
ind_df = pd.merge(df_product, ind_df,
how="inner", on="srl_no")
file_name = "Output_csv\\" + output + ".csv"
ind_df.to_csv(file_name, index=False)
return ind_df
# Function to extract the relevant tax data (tax payable, ITC and cash) from GSTR1 & GSTR3
def hsn_tax_data(filename, sheet_name_cash_ratio, sheet_name_gstr1, gst_collection_full_year_dom):
# we have data by HSCode of a sample on the output tax and net gst paid (after inout tax credit)
# we use this data to calculate the ratio of net tax paid to output tax
# we shall use this data to apply to data from
# form gst1 which has only output tax data
# calculating the net tax paid ratios
tax_cash_df = pd.read_excel(filename, sheet_name_cash_ratio, index_col=False)
tax_cash_df.fillna(0, inplace=True)
tax_cash_df['cash_tax_payable_ratio'] = tax_cash_df['tax_cash']/tax_cash_df['tax_payable']
tax_cash_df['HSN2'] = np.where(tax_cash_df['HSN2']>9, tax_cash_df['HSN2'].astype(str),
('0'+ tax_cash_df['HSN2'].astype(str)))
# extracting the data from gstr1
df_gstr1 = pd.read_excel(filename, sheet_name_gstr1, index_col=False)
df_gstr1.fillna(0, inplace=True)
df_gstr1['HSN2'] = np.where(df_gstr1['HSN2']>9, df_gstr1['HSN2'].astype(str),
('0'+ df_gstr1['HSN2'].astype(str)))
# Data is for 8 months now grossedup to one year
df_gstr1['gstr1_tax_payable'] = df_gstr1['gstr1_tax_payable'] * (12/8)
tax_cash_df = pd.merge(tax_cash_df, df_gstr1,
how="inner", on="HSN2")
# applying the ratios calculated above to calculate the net tax paid
# from the putput tax given in gstr1
tax_cash_df['tax_cash'] = (tax_cash_df['cash_tax_payable_ratio'] *
tax_cash_df['gstr1_tax_payable'])
tax_collection_gstr1 = tax_cash_df['tax_cash'].sum()
# GSTR1 does not explain all the tax so blow up
blow_up_factor = (gst_collection_full_year_dom/tax_collection_gstr1)
tax_cash_df['tax_payable_bu'] = df_gstr1['gstr1_tax_payable']*blow_up_factor
tax_cash_df['tax_cash_bu'] = tax_cash_df['tax_cash']*blow_up_factor
tax_cash_df['tax_itc_bu'] = (tax_cash_df['tax_payable_bu'] -
tax_cash_df['tax_cash_bu'])
#tax_cash_dom_less_trade = tax_cash_df['tax_cash_bu'].sum()
# the dataframe tax_cash explains the complete tax collected
# and breaks it down by HS Code
return tax_cash_df
# Function to get the unique combination for SUT srl_no and HSN-2 digit code
def hsn_sut_conc(filename, concordance_sheet):
concordance_df = pd.read_excel(filename, concordance_sheet, index_col=False)
hsn_df = concordance_df.sort_values(['HSN2', 'srl_no'])
hsn_df['HSN2'] = np.where(hsn_df['HSN2']>9, hsn_df['HSN2'].astype(str),
('0'+ hsn_df['HSN2'].astype(str)))
hsn_df['key'] = hsn_df['srl_no'].astype(str) + '_' + hsn_df['HSN2']
hsn_df = hsn_df.drop_duplicates(subset='key', keep='first')
hsn_df = hsn_df.reset_index()
hsn_df = hsn_df.drop(['index', 'key', 'HSN', 'product_id'], axis=1)
hsn_df['srl_no'] = hsn_df['srl_no'].astype(str)
return hsn_df
def concord_comm_vec(hsn_df_copy, alloc_mat, alloc_var):
# concording the srl_no data and allocating to industry
# allocation is based on the distribution by srl_no
# as per alloc_mat - Supply or Use
# we first create a dataframe with the totals of supply by commodity
# i.e. by Srl_no
alloc_comm_vec = calc_sum_by_commodity(alloc_mat)
alloc_comm_vec_df = pd.DataFrame(data=alloc_comm_vec, columns=np.array([alloc_var]))
alloc_comm_vec_df = alloc_comm_vec_df.reset_index()
alloc_comm_vec_df = alloc_comm_vec_df.rename(columns={'index':'srl_no'})
alloc_comm_vec_df['srl_no'] = alloc_comm_vec_df['srl_no'] + 1
alloc_comm_vec_df['srl_no'] = alloc_comm_vec_df['srl_no'].astype(str)
# we then merge this onto the the srl_no HSN concordance file
# to allocate a HSN for each serial number
hsn_df_copy = pd.merge(hsn_df_copy, alloc_comm_vec_df,
how="outer", on="srl_no")
# we then group the alloc_var eg. output by HSN
alloc_hsn2 = hsn_df_copy.groupby('HSN2')[alloc_var].sum()
alloc_hsn2 = alloc_hsn2.values
alloc_hsn2_df = pd.DataFrame(data=alloc_hsn2, columns=np.array([alloc_var+'_hsn2']))
alloc_hsn2_df = alloc_hsn2_df.reset_index()
alloc_hsn2_df = alloc_hsn2_df.rename(columns={'index':'HSN2'})
alloc_hsn2_df['HSN2'] = np.where(alloc_hsn2_df['HSN2']>9, alloc_hsn2_df['HSN2'].astype(str),
('0'+ alloc_hsn2_df['HSN2'].astype(str)))
# we merge the alloc_var eg. output by HSN back to the srl_no HSN
# concordance we now have the HSN wise total of alloc_var eg. output
# mapped to every srl_no
hsn_df_copy = pd.merge(hsn_df_copy, alloc_hsn2_df,
how="outer", on="HSN2")
hsn_df_copy = hsn_df_copy.dropna()
# we calculate the weight of each output (alloc_var) by commodity for
# srl_no over the output per commodity by HSN
# This gives what proportion of HSN output (alloc_var) is one particular
# srl_no
hsn_df_copy['srl_HSN_wt'] = hsn_df_copy[alloc_var]/hsn_df_copy[alloc_var+'_hsn2']
hsn_df_copy = hsn_df_copy.sort_values('HSN2')
# we then use these weights to allocate the parameter we are trying to
# apportion by srl_no
if alloc_var=='output tax':
hsn_df_copy['alloc_var_srl_no'] = hsn_df_copy['srl_HSN_wt'] * hsn_df_copy['tax_payable_bu']
else:
if alloc_var=='itc':
hsn_df_copy['alloc_var_srl_no'] = hsn_df_copy['srl_HSN_wt'] * hsn_df_copy['tax_itc_bu']
else:
if alloc_var=='tax':
hsn_df_copy['alloc_var_srl_no'] = hsn_df_copy['srl_HSN_wt'] * hsn_df_copy['tax_cash_bu']
else:
if alloc_var=='etr':
hsn_df_copy['alloc_var_srl_no1'] = hsn_df_copy['srl_HSN_wt'] * hsn_df_copy['tax_payable']
hsn_df_copy['alloc_var_srl_no2'] = hsn_df_copy['srl_HSN_wt'] * hsn_df_copy['taxable_value']
hsn_df_copy['srl_no'] = hsn_df_copy['srl_no'].astype(int)
hsn_df_copy = hsn_df_copy.sort_values('srl_no')
# grouping by serial number as multiple entries are there
if alloc_var=='etr':
srl_no_alloc_var1 = hsn_df_copy.groupby('srl_no')['alloc_var_srl_no1'].sum()
srl_no_alloc_var2 = hsn_df_copy.groupby('srl_no')['alloc_var_srl_no2'].sum()
srl_no_alloc_var = np.where(srl_no_alloc_var2==0, 0, srl_no_alloc_var1/srl_no_alloc_var2)
srl_no_alloc_var_vec = srl_no_alloc_var.reshape(srl_no_alloc_var.shape[0], 1)
else:
srl_no_alloc_var = hsn_df_copy.groupby('srl_no')['alloc_var_srl_no'].sum()
# hsn_df[['srl_no', 'HSN2', 'tax_cash_bu', 'srl_HSN_wt', 'tax_cash_bu_srl_no']]
srl_no_alloc_var_df = srl_no_alloc_var.reset_index()
srl_no_alloc_var_df['srl_no'] = srl_no_alloc_var_df['srl_no'].astype(int)
srl_no_alloc_var_df = srl_no_alloc_var_df.sort_values('srl_no')
# srl_no_alloc_var_df.to_csv('srl_no_tax_cash.csv')
srl_no_alloc_var_vec = srl_no_alloc_var_df['alloc_var_srl_no'].values
srl_no_alloc_var_vec = srl_no_alloc_var_vec.reshape(srl_no_alloc_var_vec.shape[0], 1)
return srl_no_alloc_var_vec
def concord_ind_vec(srl_no_alloc_var_vec, allocation_ratio):
alloc_var_mat = calc_allocation_to_industry(allocation_ratio, srl_no_alloc_var_vec)
# np.savetxt("Output_csv\\alloc_sec.csv", alloc_var_mat , delimiter=",")
alloc_var_ind_vec = calc_sum_by_industry(alloc_var_mat)
return alloc_var_ind_vec