-
Notifications
You must be signed in to change notification settings - Fork 5
/
pfcn_dmf.py
243 lines (197 loc) · 9.32 KB
/
pfcn_dmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# _*_ coding: utf-8 _*_
# @Time : 2022/3/24
# @Author : Jiakai Tang
# @Email : [email protected]
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from recbole.model.layers import MLPLayers
from recbole.model.abstract_recommender import FairRecommender
from recbole.model.loss import BPRLoss
from recbole.utils import InputType
r"""
PFCN
################################################
Reference:
Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2021. Towards Personalized Fairness based on Causal Notion. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.
"""
class PFCN_DMF(FairRecommender):
r""" PFCN is a framework for achieving counterfactually fair recommendations through adversary learning by generating feature-independent user embeddings for recommendation.
PFCN_DMF's base model is DMF
"""
input_type = InputType.PAIRWISE
def __init__(self, config, dataset):
super(PFCN_DMF, self).__init__(config, dataset)
# load dataset info
self.embedding_size = config['embedding_size']
self.sst_attrs = config['sst_attr_list']
self.filter_mode = config['filter_mode'].lower()
self.num_layers = config['num_layers']
self.mlp_dropout = config['mlp_dropout']
self.mlp_activation = config['mlp_activation']
self.dis_activation = config['dis_activation']
try:
assert self.filter_mode in ('cm','sm','none')
except AssertionError:
raise AssertionError('filter_mode must be cm, sm or none')
self.filter_num, self.sst_dict = self._get_filter_info()
self.sst_size = self._get_sst_size(dataset.get_user_feature())
if self.filter_mode != 'none':
self.dis_drop_out = config['dis_dropout']
self.dis_weight = config['dis_weight']
self.dis_hidden_size_list = config['dis_hidden_size_list']
# define layers and loss
self.user_embedding_layer = nn.Embedding(self.n_users, self.embedding_size)
self.item_embedding_layer = nn.Embedding(self.n_items, self.embedding_size)
self.user_mlp = MLPLayers(layers=[self.embedding_size]+[self.embedding_size for _ in range(self.num_layers)],
dropout=self.mlp_dropout, activation=self.mlp_activation, init_method='norm')
self.item_mlp = MLPLayers(layers=[self.embedding_size]+[self.embedding_size for _ in range(self.num_layers)],
dropout=self.mlp_dropout, activation=self.mlp_activation, init_method='norm')
self.loss_fun = BPRLoss()
self.cosine_similarity = nn.CosineSimilarity()
self.sigmoid = nn.Sigmoid()
if self.filter_mode != 'none':
self.filter_layer = self.init_filter()
self.dis_layer_dict = self.init_dis_layer()
self.multi_dis_fun = nn.CrossEntropyLoss()
self.bin_dis_fun = nn.BCELoss()
def _get_filter_info(self):
if self.filter_mode == 'cm':
filter_num = len(self.sst_attrs)
sst_dict = {}
for i, sst in enumerate(self.sst_attrs):
sst_dict[sst] = i + 1
elif self.filter_mode == 'sm':
filter_num = 2 ** len(self.sst_attrs) - 1
sst_dict = {}
for i, sst in zip(2 ** np.array(range(len(self.sst_attrs))), self.sst_attrs):
sst_dict[sst] = i
else:
filter_num = 0
sst_dict = {}
return filter_num, sst_dict
def _get_sst_size(self, user_feature):
r""" calculate size of each sensitive attribute for discriminator construction
Args:
user_feature(Interaction): contain user's features, such as gender, age, etc.
Returns:
dict: every sensitive attribute and its number
"""
sst_size = {}
for sst in self.sst_attrs:
try:
assert sst in user_feature.columns
except AssertionError:
raise ValueError(f'{sst} sensitive attribute not in user feature')
sst_size[sst] = len(user_feature[sst][1:].unique())
return sst_size
def init_filter(self):
r""" according selection of filter mode, build corresponding filter layer
Returns:
list: filter layer
"""
filter_layer = {}
embedding_size = self.embedding_size
for i in range(self.filter_num):
filter_model = MLPLayers([embedding_size, embedding_size*2, embedding_size],
activation=self.dis_activation,
bn=True,
init_method='norm')
filter_layer[i+1] = filter_model.to(self.device)
return filter_layer
def init_dis_layer(self):
r""" build discriminator for each sensitive attribute
Return:
dict: sensitive attribute and its discriminator
"""
embedding_size = self.embedding_size
sst_size = self.sst_size
sst_attrs = self.sst_attrs
dis_hidden_size_list = self.dis_hidden_size_list
dis_layer_dict = {}
for sst in sst_attrs:
output_dim = sst_size[sst]
if output_dim == 2:
output_dim = 1
dis_layer_dict[sst] = MLPLayers([embedding_size] + dis_hidden_size_list + [output_dim],
dropout=self.dis_drop_out,
activation=self.dis_activation,
bn=True,
init_method='norm').to(self.device)
return dis_layer_dict
def forward(self, user, item=None, sst_list=None):
user_embed = self.user_embedding_layer(user)
user_embed = self.user_mlp(user_embed)
item_embed = None
if item is not None:
item_embed = self.item_embedding_layer(item)
item_embed = self.item_mlp(item_embed)
if self.filter_mode == 'none':
return user_embed, item_embed
elif self.filter_mode == 'sm':
idx = 0
for sst in sst_list:
idx += self.sst_dict[sst]
user_embed = self.filter_layer[idx](user_embed)
else:
user_temp = None
for sst in sst_list:
idx = self.sst_dict[sst]
embed = self.filter_layer[idx](user_embed)
user_temp = embed if user_temp is None else user_temp + embed
user_embed = user_temp / len(self.filter_layer)
return user_embed, item_embed
def predict(self, interaction, sst_list=None):
user = interaction[self.USER_ID]
item = interaction[self.ITEM_ID]
user_embeddings, item_embeddings = self.forward(user, item, sst_list)
pred_scores = self.cosine_similarity(user_embeddings, item_embeddings)
return self.sigmoid(pred_scores)
def calculate_loss(self, interaction, sst_list):
user = interaction[self.USER_ID]
pos_item = interaction[self.POS_ITEM_ID]
neg_item = interaction[self.NEG_ITEM_ID]
user_embed, pos_item_embed = self.forward(user, pos_item, sst_list)
neg_item_embed = self.item_embedding_layer(neg_item)
neg_item_embed = self.item_mlp(neg_item_embed)
pos_scores = self.cosine_similarity(user_embed, pos_item_embed) * 10
neg_scores = self.cosine_similarity(user_embed, neg_item_embed) * 10
bpr_loss = self.loss_fun(pos_scores, neg_scores)
if self.filter_mode != 'none':
dis_loss = self.calculate_dis_loss(interaction,sst_list)
return bpr_loss - self.dis_weight * dis_loss
return bpr_loss
def calculate_dis_loss(self, interaction, sst_list):
user = interaction[self.USER_ID]
sst_label_dict = {}
for sst in sst_list:
sst_label_dict[sst] = interaction[sst]
dis_loss = .0
user_embed, _ = self.forward(user,None,sst_list)
for sst in sst_list:
dis_layer = self.dis_layer_dict[sst]
if self.sst_size[sst] == 2:
logits = nn.Sigmoid()(dis_layer(user_embed))
dis_loss += self.bin_dis_fun(logits, sst_label_dict[sst].float().unsqueeze(1))
else:
dis_loss += self.multi_dis_fun(dis_layer(user_embed), sst_label_dict[sst].long())
return dis_loss
def full_sort_predict(self, interaction, sst_list=None):
user = interaction[self.USER_ID]
user_embed = self.forward(user,None,sst_list)
all_item_embed = self.item_embedding_layer.weight
all_item_embed = self.item_mlp(all_item_embed)
# dot with all item embedding to accelerate
pred_scores = self.cosine_similarity(torch.repeat_interleave(user_embed,self.n_items,dim=0),
all_item_embed.repeat(self.n_users,1))
return self.sigmoid(pred_scores.view(-1))
def get_sst_embed(self, user_data, sst_list=None):
ret_dict = {}
user_indices = torch.arange(1,self.n_users)
sst_list = self.sst_attrs if self.filter_mode == 'none' else sst_list
for sst in sst_list:
ret_dict[sst] = user_data[sst][user_indices-1]
user_embeddings, _ = self.forward(user_indices.to(self.device),None,sst_list)
ret_dict['embedding'] = user_embeddings
return ret_dict