-
Notifications
You must be signed in to change notification settings - Fork 5
/
resume_run_recbole.py
150 lines (117 loc) · 5.84 KB
/
resume_run_recbole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# @Time : 2020/10/6
# @Author : Shanlei Mu
# @Email : [email protected]
"""
recbole.quick_start
########################
"""
import logging
from logging import getLogger
import torch
import pickle
import sys
import os
from recbole.config import Config
from recbole.data import create_dataset, data_preparation, save_split_dataloaders, load_split_dataloaders
from recbole.utils import init_logger, get_model, get_trainer, init_seed, logger, set_color
def run_recbole(model=None, dataset=None, config_file_list=None, config_dict=None, saved=True):
r""" A fast running api, which includes the complete process of
training and testing a model on a specified dataset
Args:
model (str, optional): Model name. Defaults to ``None``.
dataset (str, optional): Dataset name. Defaults to ``None``.
config_file_list (list, optional): Config files used to modify experiment parameters. Defaults to ``None``.
config_dict (dict, optional): Parameters dictionary used to modify experiment parameters. Defaults to ``None``.
saved (bool, optional): Whether to save the model. Defaults to ``True``.
"""
# configurations initialization
# logger initialization
model_file = f'saved/saved_{model}/{dataset}_{model}.pth'
config, model, dataset, train_data, valid_data, test_data = load_data_and_model(
model=model,
dataset=dataset,
model_file=model_file,
dataset_file=None,
dataloader_file=None,
config_file_list=config_file_list,
config_dict=config_dict
)
# config = Config(model='UGF_MF', dataset='yahoo', config_file_list=['UGF_MF.yaml'])
# train_data, valid_data, test_data = data_preparation(config, dataset)
init_seed(config['seed'], config['reproducibility'])
init_logger(config)
logger = getLogger()
logger.info(config)
logger.info(dataset)
logger.info(model)
# trainer loading and initialization
trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
trainer.resume_checkpoint(resume_file=model_file)
# trainer._save_sst_embed(train_data)
# model training
# best_valid_score, best_valid_result = trainer.fit(
# train_data, valid_data, saved=saved, show_progress=config['show_progress']
# )
# model evaluation
valid_result = trainer.evaluate(valid_data, load_best_model=saved, model_file=model_file, show_progress=config['show_progress'])
# best_valid_result = trainer.evaluate(test_data, load_best_model=saved, model_file=model_file, show_progress=config['show_progress'])
logger.info(set_color('valid result', 'yellow') + f': {valid_result}')
# logger.info(set_color('best valid ', 'yellow') + f': {best_valid_result}')
return valid_result[config['valid_metric'].lower()]
# return best_valid_result[config['valid_metric'].lower()]
# return {
# 'best_valid_score': best_valid_score,
# 'valid_score_bigger': config['valid_metric_bigger'],
# 'best_valid_result': best_valid_result,
# 'test_result': test_result
# }
def load_data_and_model(model, dataset, model_file, dataset_file=None, dataloader_file=None, config_file_list=None, config_dict=None):
r"""Load filtered dataset, split dataloaders and saved model.
Args:
model_file (str): The path of saved model file.
dataset_file (str, optional): The path of filtered dataset. Defaults to ``None``.
dataloader_file (str, optional): The path of split dataloaders. Defaults to ``None``.
Note:
The :attr:`dataset` will be loaded or created according to the following strategy:
If :attr:`dataset_file` is not ``None``, the :attr:`dataset` will be loaded from :attr:`dataset_file`.
If :attr:`dataset_file` is ``None`` and :attr:`dataloader_file` is ``None``,
the :attr:`dataset` will be created according to :attr:`config`.
If :attr:`dataset_file` is ``None`` and :attr:`dataloader_file` is not ``None``,
the :attr:`dataset` will neither be loaded or created.
The :attr:`dataloader` will be loaded or created according to the following strategy:
If :attr:`dataloader_file` is not ``None``, the :attr:`dataloader` will be loaded from :attr:`dataloader_file`.
If :attr:`dataloader_file` is ``None``, the :attr:`dataloader` will be created according to :attr:`config`.
Returns:
tuple:
- config (Config): An instance object of Config, which record parameter information in :attr:`model_file`.
- model (AbstractRecommender): The model load from :attr:`model_file`.
- dataset (Dataset): The filtered dataset.
- train_data (AbstractDataLoader): The dataloader for training.
- valid_data (AbstractDataLoader): The dataloader for validation.
- test_data (AbstractDataLoader): The dataloader for testing.
"""
checkpoint = torch.load(model_file)
if config_file_list is not None:
config = Config(model=model, dataset=dataset, config_file_list=config_file_list, config_dict=config_dict)
else:
config = checkpoint['config']
init_logger(config)
dataset = None
if dataset_file:
with open(dataset_file, 'rb') as f:
dataset = pickle.load(f)
if dataloader_file:
train_data, valid_data, test_data = load_split_dataloaders(config)
else:
if dataset is None:
dataset = create_dataset(config)
train_data, valid_data, test_data = data_preparation(config, dataset)
model = get_model(config['model'])(config, train_data.dataset).to(config['device'])
model.load_state_dict(checkpoint['state_dict'])
model.load_other_parameter(checkpoint.get('other_parameter'))
return config, model, dataset, train_data, valid_data, test_data
if __name__ == '__main__':
os.chdir(sys.path[0])
results = run_recbole()
print('---'*10)
print(results)