-
Notifications
You must be signed in to change notification settings - Fork 2
/
Volume titration.Rmd
438 lines (337 loc) · 18.3 KB
/
Volume titration.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
---
title: "CITE-seq optimization - Staining volume titration"
author: "Terkild Brink Buus"
date: "30/3/2020"
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(warning=FALSE, message=FALSE)
options(stringsAsFactors=FALSE)
```
## Load utilities
Including libraries, plotting and color settings and custom utility functions
```{r loadLibraries, results='hide', message=FALSE, warning=FALSE}
set.seed(114)
require("Seurat", quietly=T)
require("tidyverse", quietly=T)
library("Matrix", quietly=T)
library("patchwork", quietly=T)
## Load ggplot theme and defaults
source("R/ggplot_settings.R")
## Load helper functions
source("R/Utilities.R")
## Load predefined color schemes
source("R/color.R")
## Load feature_rankplot functions
source("R/feature_rankplot.R")
source("R/feature_rankplot_hist.R")
source("R/feature_rankplot_hist_custom.R")
outdir <- "figures"
data.Seurat <- "data/5P-CITE-seq_Titration.rds"
data.abpanel <- "data/Supplementary_Table_1.xlsx"
data.markerStats <- "data/markerByClusterStats.tsv"
## Make a custom function for formatting the concentration scale
scaleFUNformat <- function(x) sprintf("%.2f", x)
```
## Load Seurat object
Subset to only focus on conditions with 1 mio cells and dilution factor 4 (thus comparing 50µl to 25µl staining volume in PBMCs).
```{r loadSeurat}
object <- readRDS(file=data.Seurat)
## Show number of cells from each sample
table(object$group)
object <- subset(object, subset=dilution == "DF4" & cellsAtStaining == "1000k")
object
```
## Load Ab panel annotation and concentrations
Marker stats is reused in other comparisons and was calculated in the end of the preprocessing vignette.
```{r loadABPanel}
abpanel <- data.frame(readxl::read_excel(data.abpanel))
rownames(abpanel) <- abpanel$Marker
## As we are only working with dilution factor 4 samples here, we want to show labels accordingly
# a bit of a hack...
abpanel$conc_µg_per_mL <- abpanel$conc_µg_per_mL/4
markerStats <- read.table(data.markerStats)
markerStats.PBMC <- markerStats[markerStats$tissue == "PBMC",]
rownames(markerStats) <- paste(markerStats$marker,markerStats$tissue,sep="_")
## Make a ordering vector ordering markers per concentration and total UMI count
marker.order <- markerStats.PBMC$marker[order(markerStats.PBMC$conc_µg_per_mL, markerStats.PBMC$UMItotal, decreasing=TRUE)]
head(abpanel)
head(markerStats)
```
## Cell type and tissue overview
Make tSNE plots colored by cell type, cluster and tissue of origin.
```{r tsnePlots, fig.height=3, fig.width=7}
p.tsne.volume <- DimPlot(object, group.by="volume", reduction="tsne", pt.size=0.1, combine=FALSE)[[1]] + theme_get() + facet_wrap(~"Volume") + scale_color_manual(values=color.volume)
p.tsne.cluster <- DimPlot(object, group.by="supercluster", reduction="tsne", pt.size=0.1, combine=FALSE)[[1]] + theme_get() + scale_color_manual(values=color.supercluster) + facet_wrap(~"Cell types")
p.tsne.finecluster <- DimPlot(object, label=TRUE, label.size=3, reduction="tsne", group.by="fineCluster", pt.size=0.1, combine=FALSE)[[1]] + theme_get() + facet_wrap( ~"Clusters") + guides(col=F)
p.tsne.cluster + p.tsne.finecluster + p.tsne.volume
```
## Overall ADT counts
Extract UMI data and calculate UMI sum per marker within each condition.
```{r calculateUMIcountsPerMarker}
## Get the data
ADT.matrix <- data.frame(GetAssayData(object, assay="ADT.kallisto", slot="counts"))
ADT.matrix$marker <- rownames(ADT.matrix)
ADT.matrix$conc <- abpanel[ADT.matrix$marker,"conc_µg_per_mL"]
ADT.matrix <- ADT.matrix %>% pivot_longer(c(-marker,-conc))
## Get cell annotations
cell.annotation <- FetchData(object, vars=c("volume"))
## Calculate marker sum from each dilution within both tissues
ADT.matrix.agg <- ADT.matrix %>% group_by(volume=cell.annotation[name,"volume"], marker, conc) %>% summarise(sum=sum(value))
## Order markers by concentration
ADT.matrix.agg$marker.byConc <- factor(ADT.matrix.agg$marker, levels=marker.order)
## Extract marker annotation
ann.markerConc <- abpanel[marker.order,]
ann.markerConc$Marker <- factor(marker.order, levels=marker.order)
ADT.matrix.agg.total <- ADT.matrix.agg
```
## Plot overall ADT counts by conditions
Samples stained with diluted Ab panel have reduced ADT counts.
```{r UMIcountsPerCondition, fig.width=2.5, fig.height=2}
p.UMIcountsPerCondition <- ggplot(ADT.matrix.agg.total[order(-ADT.matrix.agg$conc, -ADT.matrix.agg$sum),], aes(x=volume, y=sum/10^6, fill=conc)) +
geom_bar(stat="identity", col=alpha(col="black",alpha=0.05)) +
scale_fill_viridis_c(trans="log2", labels=scaleFUNformat, breaks=c(0.0375,0.15,0.625,2.5,10)) +
scale_y_continuous(expand=c(0,0,0,0.05)) +
labs(fill="DF4\nµg/mL", y=bquote("ADT UMI counts ("~10^6~")")) +
guides(fill=guide_colourbar(reverse=T)) +
theme(panel.grid.major=element_blank(), axis.title.x=element_blank(), panel.border=element_blank(), axis.line = element_line(), legend.position="right")
p.UMIcountsPerCondition
```
## Compare total UMI counts per marker
Plot total UMI counts for each marker at the investigated dilution factors (DF1 vs. DF4). To ease readability, we place dashed lines between each concentration.
```{r plotUMIcountsPerMarker, fig.width=4.5, fig.height=5}
## Calculate "breaks" where concentration change.
lines <- length(marker.order)-cumsum(sapply(split(ann.markerConc$Marker,ann.markerConc$conc_µg_per_mL),length))+0.5
lines <- data.frame(breaks=lines[-length(lines)])
## Make a marker by concentration "heatmap"
p.markerByConc <- ggplot(ann.markerConc, aes(x=1, y=Marker, fill=conc_µg_per_mL)) +
geom_tile(col=alpha(col="black",alpha=0.2)) +
geom_hline(data=lines,aes(yintercept=breaks), linetype="dashed", alpha=0.5) +
scale_fill_viridis_c(trans="log2") +
labs(fill="µg/mL") +
theme_get() +
theme(axis.ticks.x=element_blank(), axis.title = element_blank(), axis.text.x=element_blank(), panel.grid=element_blank(), legend.position="right", plot.margin=unit(c(0.1,0.1,0.1,0.1),"mm")) + scale_x_continuous(expand=c(0,0))
## Make UMI counts per Marker plot
p.UMIcountsPerMarker <- ggplot(ADT.matrix.agg, aes(x=marker.byConc,y=log2(sum))) +
geom_line(aes(group=marker), size=1.2, color="#666666") +
geom_point(aes(group=volume, fill=volume), pch=21, size=0.7) +
geom_vline(data=lines,aes(xintercept=breaks), linetype="dashed", alpha=0.5) +
scale_fill_manual(values=color.volume) +
scale_y_continuous(breaks=c(9:17)) +
ylab("log2(UMI sum)") +
guides(fill=guide_legend(override.aes=list(size=1.5), reverse=TRUE)) +
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), legend.position="bottom", legend.justification="left", legend.title.align=0, legend.key.width=unit(0.2,"cm"), legend.title=element_blank()) +
coord_flip()
## Combine plot with markerByConc annotation heatmap
plotUMIcountsPerMarker <- p.markerByConc + guides(fill=F) + p.UMIcountsPerMarker + guides(fill=F) + plot_spacer() + guide_area() + plot_layout(ncol=4, widths=c(1,30,0.1), guides='collect')
plotUMIcountsPerMarker
```
## Compare change in UMI/cell within expressing cluster
Using a specific percentile may be prone to outliers in small clusters (i.e. the 90th percentile of a cluster of 30 will be the #3 higest cell making it prone to outliers). We thus set a threshold of the value to only be the 90th percentile if cluster contains more than 100 cells. For smaller clusters, the median is used. Expressing cluster is identified in the "preprocessing" vignette.
```{r UMIinExpressingCells, fig.width=4.5, fig.height=5}
## Get the data
ADT.matrix <- data.frame(GetAssayData(object, assay="ADT.kallisto", slot="counts"))
ADT.matrix$marker <- rownames(ADT.matrix)
ADT.matrix$conc <- abpanel[ADT.matrix$marker,"conc_µg_per_mL"]
ADT.matrix <- ADT.matrix %>% pivot_longer(c(-marker,-conc))
## Get cell annotations
cell.annotation <- FetchData(object, vars=c("volume", "fineCluster"))
## Calculate marker statistics from each dilution within each cluster
ADT.matrix.agg <- ADT.matrix %>% group_by(volume=cell.annotation[name,"volume"], fineCluster=cell.annotation[name,"fineCluster"], marker, conc) %>% summarise(sum=sum(value), median=quantile(value, probs=c(0.9)), nth=nth(value))
ADT.matrix.agg$tissue == "PBMC"
## Use data for the previously determined expressing cluster.
Cluster.max <- markerStats[markerStats$tissue == "PBMC",c("marker","fineCluster")]
Cluster.max$fineCluster <- factor(Cluster.max$fineCluster)
ADT.matrix.aggByClusterMax <- Cluster.max %>% left_join(ADT.matrix.agg)
ADT.matrix.aggByClusterMax$marker.byConc <- factor(ADT.matrix.aggByClusterMax$marker, levels=marker.order)
p.UMIinExpressingCells <- ggplot(ADT.matrix.aggByClusterMax, aes(x=marker.byConc, y=log2(nth))) +
geom_line(aes(group=marker), size=1.2, color="#666666") +
geom_point(aes(group=volume, fill=volume), pch=21, size=0.7) +
geom_vline(data=lines,aes(xintercept=breaks), linetype="dashed", alpha=0.5) +
geom_text(aes(label=paste0(fineCluster," ")), y=Inf, adj=1, size=1.5) +
scale_fill_manual(values=color.volume) +
scale_y_continuous(breaks=c(0:11), labels=2^c(0:11), expand=c(0.05,0.5)) +
ylab("90th percentile UMI of expressing cluster") +
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), legend.position="right", legend.justification="left", legend.title.align=0, legend.key.width=unit(0.2,"cm")) +
coord_flip()
## Combine plot with markerByConc annotation heatmap
UMIinExpressingCells <- p.markerByConc + theme(legend.position="none") + p.UMIinExpressingCells + theme(legend.position="none") + plot_spacer() + plot_layout(ncol=4, widths=c(1,30,0.1), guides='collect')
UMIinExpressingCells
```
## Titration examples
Most markers are largely unaffected by reducing staining volume. However, some antibodies used at low concentrations and targeting abundant epitopes are affected, an example of such is CD31:
```{r fig.width=1.4, fig.height=2.3}
## Make helper function for plotting titration plots
titrationPlot <- function(marker, gate.PBMC=NULL, gate.Lung=NULL, y.axis=FALSE, show.gate=TRUE, legend=FALSE){
curMarker.name <- marker
## Get antibody concentration for legends
curMarker.DF1conc <- abpanel[curMarker.name, "conc_µg_per_mL"]
if(show.gate==TRUE){
## Load gating percentages from manually set DSB thresholds
gate <- data.frame(gate=markerStats[markerStats$marker == curMarker.name & markerStats$tissue== "PBMC",c("pct")])
gate$gate <- 1-(gate$gate/100)
rownames(gate) <- gate$wrap
## Allow manual gating
if(!is.null(gate.PBMC)) gate <- gate.PBMC
} else {
gate <- NULL
}
p <- feature_rankplot_hist_custom(data=object,
marker=paste0("adt_",curMarker.name),
group="volume",
barcodeGroup="supercluster",
conc=curMarker.DF1conc,
legend=legend,
yaxis.text=y.axis,
gates=gate,
histogram.colors=color.volume,
title=curMarker.name)
return(p)
}
p.CD31 <- titrationPlot("CD31", legend=TRUE)
p.CD31
```
## tSNE plots
Make tSNE plots with raw UMI counts. Use rainbow color scheme to show dynamic range in expression levels.
```{r, fig.height=2, fig.width=7}
show_tsne_markers <- c("CD31","CD8")
f.tsne.format <- function(x){
x +
scale_color_gradientn(colours = c("#000033","#3333FF","#3377FF","#33AAFF","#33CC33","orange","red"),
limits=c(0,NA)) +
scale_y_continuous(expand=c(0,0,0.05,0), limits=c(-45.52796,37.94770)) +
xlim(c(-40.83170,49.63832)) +
theme_get() +
theme(plot.title=element_text(size=7, face="bold", hjust=0.5),
plot.background=element_blank(),
panel.background=element_blank(),
axis.title=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
legend.key.width=unit(3,"mm"),
legend.key.height=unit(2,"mm"),
legend.position=c(1,-0.03),
legend.justification=c(1,0),
legend.background=element_blank(),
legend.direction="horizontal")
}
maximum <- apply(FetchData(object, vars=paste0("adt_",show_tsne_markers), slot="counts"),2,quantile,probs=c(0.95))
p.tsne.1 <- f.tsne.format(FeaturePlot(subset(object, subset=volume=="25µl"), reduction="tsne", sort=TRUE, combine=FALSE, features=paste0("adt_",show_tsne_markers[1]), slot="counts", max.cutoff=maximum[1], pt.size=0.1)[[1]])
p.tsne.2 <- f.tsne.format(FeaturePlot(subset(object, subset=volume=="50µl"), reduction="tsne", sort=TRUE, combine=FALSE, features=paste0("adt_",show_tsne_markers[1]), slot="counts", max.cutoff=maximum[1], pt.size=0.1)[[1]])
p.tsne.3 <- f.tsne.format(FeaturePlot(subset(object, subset=volume=="25µl"), reduction="tsne", sort=TRUE, combine=FALSE, features=paste0("adt_",show_tsne_markers[2]), slot="counts", max.cutoff=maximum[2], pt.size=0.1)[[1]])
p.tsne.4 <- f.tsne.format(FeaturePlot(subset(object, subset=volume=="50µl"), reduction="tsne", sort=TRUE, combine=FALSE, features=paste0("adt_",show_tsne_markers[2]), slot="counts", max.cutoff=maximum[2], pt.size=0.1)[[1]])
p.tsne <- list(p.tsne.1 + ggtitle("25µl"),p.tsne.2 + ggtitle("50µl"),p.tsne.3 + ggtitle("25µl"),p.tsne.4 + ggtitle("50µl"))
## Get common y-axis label
p.tsne[[1]] <- p.tsne[[1]] + theme(axis.title.y=element_text())
# a bit of a hack to get a common x-axis label
p.tsne[[2]] <- p.tsne[[2]] + theme(axis.title.x=element_text(hjust=1.2))
p.UMI.tsne <- cowplot::plot_grid(plotlist=p.tsne,
align="h",
axis="tb",
nrow=1,
rel_widths=c(1.05,1,1,1),
labels=c("E",show_tsne_markers[1],"F",show_tsne_markers[2]),
label_size=panel.label_size,
vjust=panel.label_vjust,
hjust=c(panel.label_hjust,0.5,panel.label_hjust,0.5))
p.UMI.tsne
```
## Final plot
```{r figure3, fig.width=7, fig.height=6}
A <- p.UMIcountsPerCondition + theme(legend.key.width=unit(0.3,"cm"),
legend.key.height=unit(0.4,"cm"),
legend.text=element_text(size=unit(5,"pt")),
plot.margin=unit(c(0.3,0,0.5,0),"cm"))
B1 <- p.markerByConc + theme(text = element_text(size=10),
plot.margin=unit(c(0.3,0,0,0),"cm"),
legend.position="none")
B2 <- p.UMIcountsPerMarker + theme(legend.position="none")
C <- p.UMIinExpressingCells + theme(legend.position="none")
BC.legend <- cowplot::get_legend(p.UMIcountsPerMarker +
theme(legend.position="bottom",
legend.direction="horizontal",
legend.background=element_blank(),
legend.box.background=element_blank(), legend.key=element_blank()))
D <- p.CD31 + theme(plot.margin=unit(c(0.5,0,0,0),"cm"))
AD <- cowplot::plot_grid(A,D,NULL,
ncol=1,
rel_heights = c(13,17,1.5),
labels=c("A","D",""),
label_size=panel.label_size,
vjust=panel.label_vjust,
hjust=panel.label_hjust)
BC <- cowplot::plot_grid(B1, B2, C,
nrow=1,
rel_widths=c(2,10,10),
align="h",
axis="tb",
labels=c("B", "", "C"),
label_size=panel.label_size,
vjust=panel.label_vjust,
hjust=panel.label_hjust)
p.figure <- cowplot::plot_grid(cowplot::ggdraw(plot_grid(AD, BC,
nrow=1,
rel_widths=c(1,4),
align="v",
axis="l")) +
cowplot::draw_plot(BC.legend,0.27,0.020,0.2,0.00001),
p.UMI.tsne, rel_heights=c(3,1.35), align="v", axis="lr", ncol=1)
png(file=file.path(outdir,"Figure 3.png"),
width=figure.width.full,
height=6,
units = figure.unit,
res=figure.resolution,
antialias=figure.antialias)
p.figure
dev.off()
p.figure
```
## Individual titration plots
For supplementary information.
```{r suppFig1, fig.width=7, fig.height=10}
plots.columns = 6
rows.max <- 5
markers <- abpanel[rownames(object[["ADT.kallisto"]]),]
markers <- markers[order(markers$Category, markers$Marker),]
plots <- list()
## Make individual plots for each marker
for(i in 1:nrow(markers)){
curMarker <- markers[i,]
curMarker.name <- curMarker$Marker
y.axis <- ifelse((i-1) %in% c(0,6,12,18,24,30,36,42,48),TRUE,FALSE)
plots[[curMarker.name]] <- titrationPlot(curMarker.name, y.axis=y.axis)
}
# a bit of a hack to make celltype legend
p.legend <- cowplot::get_legend(ggplot(data.frame(supercluster=object$supercluster),
aes(color=supercluster,x=1,y=1)) +
geom_point(shape=15, size=1.5) +
scale_color_manual(values=color.supercluster) +
theme(legend.title=element_blank(),
legend.margin=margin(0,0,0,0),
legend.key.size = unit(0.15,"cm"),
legend.position = c(0.98,1.1),
legend.justification=c(1,1),
legend.direction="horizontal"))
plots.num <- length(plots)
plots.perPage <- plots.columns*rows.max
plots.pages <- ceiling(plots.num/plots.perPage)
## Make a supplementary figure split into pages
for(i in 1:plots.pages){
start <- (i-1)*plots.perPage+1
end <- i*plots.perPage
end <- min(end,plots.num)
curPlots <- c(start:end)
plots.rows <- ceiling(length(curPlots)/plots.columns)
curPlots <- cowplot::plot_grid(plotlist=plots[curPlots],ncol=plots.columns, rel_widths=c(1.1,1,1,1,1,1), align="h", axis="tb")
curPlots.layout <- cowplot::plot_grid(NULL, p.legend, curPlots, vjust=-0.5, hjust=panel.label_hjust, label_size=panel.label_size, ncol=1, rel_heights= c(0.5, 1.3, 70/5*plots.rows))
png(file=file.path(outdir,paste0("Supplementary Figure 3",LETTERS[i],".png")),
units=figure.unit,
res=figure.resolution,
width=figure.width.full,
height=(2*plots.rows),
antialias=figure.antialias)
print(curPlots.layout)
dev.off()
print(curPlots.layout)
}
```