forked from udacity/CarND-Vehicle-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdvLaneLine.py
502 lines (388 loc) · 20.8 KB
/
AdvLaneLine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import numpy as np
import cv2
import glob
import os
from moviepy.editor import VideoFileClip
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from IPython.display import HTML
import math
##########################################################################################################################
# Camera Calibrate
##########################################################################################################################
def color_gray(img):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return gray
nx = 9
ny = 6
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)
# Arrays to store object points and image points from all
# the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Make a list of calibration images
images = glob.glob('camera_cal/calibration*.jpg')
# Step through the list and search for chessboard corners
for fname in images:
img = cv2.imread(fname)
gray = color_gray(img)
# # Find the chessboard corners
ret, corners = cv2.findChessboardCorners(gray, (nx, ny),None)
# # If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
##########################################################################################################################
# Undistort Images
##########################################################################################################################
def cal_undistort(img, objpoints, imgpoints):
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
dist = cv2.undistort(img, mtx, dist, None, mtx)
return dist
img1 = cv2.imread('camera_cal/calibration1.jpg')
img2 = cv2.imread('camera_cal/calibration1.jpg')
img3 = mpimg.imread('test_images/6.jpg')
##########################################################################################################################
# Sobel Operator
##########################################################################################################################
def abs_sobel_thresh(img, orient='x', thresh_min=0, thresh_max=255):
gray = color_gray(img)
if orient == 'x':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0))
elif orient == 'y':
abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1))
scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel))
binary_output = np.zeros_like(scaled_sobel)
binary_output[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
return binary_output
grad_binary = abs_sobel_thresh(img3, orient='x', thresh_min=20, thresh_max=100)
##########################################################################################################################
# Magnitude of the Gradient
##########################################################################################################################
def mag_thresh(img, sobel_kernel=3, mag_thresh=(0, 255)):
gray = color_gray(img)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
gradmag = np.sqrt(sobelx**2 + sobely**2)
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
binary_output = np.zeros_like(gradmag)
binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1
return binary_output
mag_binary = mag_thresh(img3, sobel_kernel=3, mag_thresh=(30, 100))
##########################################################################################################################
# Direction of the Gradient
##########################################################################################################################
def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)):
gray = color_gray(img)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx))
binary_output = np.zeros_like(absgraddir)
binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1
return binary_output
dir_binary = dir_threshold(img3, sobel_kernel=15, thresh=(0.7, 1.3))
#########################################################################################################################
# HLS Thresholds
##########################################################################################################################
def hls_select(img, thresh=(0, 255)):
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
binary_output = np.zeros_like(s_channel)
binary_output[(s_channel > thresh[0]) & (s_channel <= thresh[1])] = 1
return binary_output
hls_binary = hls_select(img3, thresh=(90, 255))
#########################################################################################################################
# HLS Thresholds
##########################################################################################################################
def pipeline(img, s_thresh=(170, 255), sx_thresh=(20, 100)):
gradx = abs_sobel_thresh(img, orient='x', thresh_min=20, thresh_max=100)
grady = abs_sobel_thresh(img, orient='y', thresh_min=20, thresh_max=100)
mag_binary = mag_thresh(img, sobel_kernel=3, mag_thresh=(30, 100))
dir_binary = dir_threshold(img, sobel_kernel=15, thresh=(0.7, 1.3))
hls_binary = hls_select(img, thresh=(90, 255))
combined = np.zeros_like(dir_binary)
combined[((gradx == 1) & (grady == 1)) | ((hls_binary == 1) & (dir_binary == 1))] = 1
return combined
result = pipeline(img3)
#########################################################################################################################
# Perspective Images
##########################################################################################################################
def perspective_image(img):
h = img.shape[0] #720
w = img.shape[1] #1280
src = np.float32([[570, 470], [750, 470], [1130, 690], [270, 690]])
dst = np.float32([[200, 0], [1080, 0], [1080, 720], [200, 720]])
M = cv2.getPerspectiveTransform(src, dst)
warped = cv2.warpPerspective(img, M, (w, h), flags=cv2.INTER_LINEAR)
return warped
combination = perspective_image(img3)
binary_warped = perspective_image(pipeline(img3))
original_image_histogram = np.sum(combination[combination.shape[0]//2:,:], axis=0)
warped_image_histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
#########################################################################################################################
# Class Line
##########################################################################################################################
class Line():
def __init__(self):
# was the line detected in the last iteration?
self.detected = False
# x values of the last n fits of the line
self.recent_xfitted = []
#average x values of the fitted line over the last n iterations
self.bestx = None
#polynomial coefficients averaged over the last n iterations
self.best_fit = None
#polynomial coefficients for the most recent fit
self.current_fit = [np.array([False])]
#radius of curvature of the line in some units
self.radius_of_curvature = None
#distance in meters of vehicle center from the line
self.line_base_pos = None
#difference in fit coefficients between last and new fits
self.diffs = np.array([0,0,0], dtype='float')
#x values for detected line pixels
self.allx = None
#y values for detected line pixels
self.ally = None
# Checking the mean of all lines
def sanity_check(self, recent):
if len(self.recent_xfitted) > 1:
mean = np.mean(np.abs(self.bestx - recent))
return mean
# update the lines if they don't follow
def update(self, current, recent):
if (len(self.current_fit) <= 3):
self.current_fit.append(current)
self.recent_xfitted.append(recent)
else:
self.current_fit.append(current)
self.recent_xfitted.append(recent)
del self.current_fit[0]
del self.recent_xfitted[0]
self.bestx = np.mean(self.recent_xfitted, axis=0)
self.best_fit = np.mean(self.current_fit, axis=0)
# Calling Line Class
left_line = Line()
right_line = Line()
#########################################################################################################################
# Finding Lanes
##########################################################################################################################
#Create a def for easier use
def finding_lanes(binary_warped, newimg):
objpoints = [] # 3d points in real world space
imgpoints = []
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
nwindows = 9
window_height = np.int(binary_warped.shape[0]/nwindows)
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
leftx_current = leftx_base
rightx_current = rightx_base
margin = 100
minpix = 50
left_lane_inds = []
right_lane_inds = []
for window in range(nwindows):
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
ym_per_pix = 30/720
xm_per_pix = 3.7/700
left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
yvals = range(0, img.shape[0])
leftCurverad = ((1 + (2*left_fit_cr[0]*yvals*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
rightCurverad = ((1 + (2*right_fit_cr[0]*yvals*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
curverad = (leftCurverad + rightCurverad)/2
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
righty = right_line.sanity_check(right_fitx)
lefty = left_line.sanity_check(left_fitx)
if len(right_line.recent_xfitted) > 1:
if righty < 100:
right_line.update(right_fit, right_fitx)
if lefty < 100:
left_line.update(left_fit, left_fitx)
else:
right_line.update(right_fit, right_fitx)
left_line.update(left_fit, left_fitx)
left_fitx = left_line.best_fit[0]*ploty**2 + left_line.best_fit[1]*ploty + left_line.best_fit[2]
right_fitx = right_line.best_fit[0]*ploty**2 + right_line.best_fit[1]*ploty + right_line.best_fit[2]
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
newwarp = cv2.warpPerspective(color_warp, Minv, (img.shape[1], img.shape[0]))
result = cv2.addWeighted(newimg, 1, newwarp, 0.3, 1)
camera_center = (left_fitx[-1] + right_fitx[-1])/2
rightcurv = "Right Radius of Curvature = %.2f m" % np.average([rightCurverad])
leftcurv = "Left Radius of Curvature = %.2f m" % np.average([leftCurverad])
center = "Vehicle is %.2f m of center" % ((camera_center - 1280/2) * xm_per_pix)
cv2.putText(result, leftcurv, (50, 50), 1, 3, (255,255,255), thickness=4)
cv2.putText(result, rightcurv, (50, 100), 1, 3, (255,255,255), thickness=4)
cv2.putText(result, center, (50, 150), 1, 3, (255,255,255), thickness=4)
return result
#Here is what the code does.
#def finding_lanes(binary_warped):
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
newimg = cv2.undistort(img, mtx, dist, None, mtx)
ym_per_pix = 10/720
xm_per_pix = 4/384
yvals = range(0, img.shape[0])
res_yvals = np.arange(img.shape[0]-(80/2),0,-80)
left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
src = np.float32([[570, 470], [750, 470], [1130, 690], [270, 690]])
dst = np.float32([[200, 0], [1080, 0], [1080, 720], [200, 720]])
#M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
newwarp = cv2.warpPerspective(color_warp, Minv, (img.shape[1], img.shape[0]))
result = cv2.addWeighted(newimg, 1, newwarp, 0.3, 0)
#########################################################################################################################
# new Pipeline
##########################################################################################################################
def newPipeline(img):
newimg = cal_undistort(img, objpoints, imgpoints)
newBinary = pipeline(newimg)
binary_warped = perspective_image(newBinary)
results = finding_lanes(binary_warped, newimg)
return results