diff --git a/d4/df4/classmachine__learning_1_1neural__network_1_1_neural_network.html b/d4/df4/classmachine__learning_1_1neural__network_1_1_neural_network.html index ac79ba81492..3e648c29527 100644 --- a/d4/df4/classmachine__learning_1_1neural__network_1_1_neural_network.html +++ b/d4/df4/classmachine__learning_1_1neural__network_1_1_neural_network.html @@ -554,7 +554,7 @@

607 {
608 std::cout << "INFO: Evaluation Started" << std::endl;
-
609 double acc = 0, loss = 0; // intialize performance metrics with zero
+
609 double acc = 0, loss = 0; // initialize performance metrics with zero
610 for (size_t i = 0; i < X.size(); i++) { // For every sample in input
611 // Get predictions
@@ -723,7 +723,7 @@

502 auto start =
504 double loss = 0,
-
505 acc = 0; // Intialize performance metrics with zero
+
505 acc = 0; // Initialize performance metrics with zero
506 // For each starting index of batch
507 for (size_t batch_start = 0; batch_start < X.size();
508 batch_start += batch_size) {
@@ -736,7 +736,7 @@

515 // They will be averaged and applied to kernel
517 gradients.resize(this->layers.size());
-
518 // First intialize gradients to zero
+
518 // First initialize gradients to zero
519 for (size_t i = 0; i < gradients.size(); i++) {
521 gradients[i], get_shape(this->layers[i].kernel));
diff --git a/dc/d93/classmachine__learning_1_1neural__network_1_1layers_1_1_dense_layer.html b/dc/d93/classmachine__learning_1_1neural__network_1_1layers_1_1_dense_layer.html index 16796a1a785..e53ae4c5358 100644 --- a/dc/d93/classmachine__learning_1_1neural__network_1_1layers_1_1_dense_layer.html +++ b/dc/d93/classmachine__learning_1_1neural__network_1_1layers_1_1_dense_layer.html @@ -196,7 +196,7 @@

neuronsnumber of neurons activationactivation function for layer kernel_shapeshape of kernel - random_kernelflag for whether to intialize kernel randomly + random_kernelflag for whether to initialize kernel randomly