-
Notifications
You must be signed in to change notification settings - Fork 31
/
data_load.py
318 lines (238 loc) · 10.7 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import argparse
import scipy.sparse as sp
import numpy as np
import torch
import ipdb
from scipy.io import loadmat
import utils
from collections import defaultdict
IMBALANCE_THRESH = 101
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--target', type=int, default=4)
parser.add_argument('--k', type = int, default = 5)
if hasattr(Trainer, 'add_args'):
Trainer.add_args(parser)
return parser
def load_data(path="data/cora/", dataset="cora"):#modified from code: pygcn
"""Load citation network dataset (cora only for now)"""
#input: idx_features_labels, adj
#idx,labels are not required to be processed in advance
#adj: save in the form of edges. idx1 idx2
#output: adj, features, labels are all torch.tensor, in the dense form
#-------------------------------------------------------
print('Loading {} dataset...'.format(dataset))
idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset),
dtype=np.dtype(str))
features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
labels = idx_features_labels[:, -1]
set_labels = set(labels)
classes_dict = {c: np.arange(len(set_labels))[i] for i, c in enumerate(set_labels)}
classes_dict = {'Neural_Networks': 0, 'Reinforcement_Learning': 1, 'Probabilistic_Methods': 2, 'Case_Based': 3, 'Theory': 4, 'Rule_Learning': 5, 'Genetic_Algorithms': 6}
#ipdb.set_trace()
labels = np.array(list(map(classes_dict.get, labels)))
# build graph
idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
idx_map = {j: i for i, j in enumerate(idx)}
edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset),
dtype=np.int32)
edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
dtype=np.int32).reshape(edges_unordered.shape)
adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
shape=(labels.shape[0], labels.shape[0]),
dtype=np.float32)
# build symmetric adjacency matrix
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
features = normalize(features)
features = torch.FloatTensor(np.array(features.todense()))
labels = torch.LongTensor(labels)
utils.print_edges_num(adj.todense(), labels)
adj = sparse_mx_to_torch_sparse_tensor(adj)
#adj = torch.FloatTensor(np.array(adj.todense()))
return adj, features, labels
def Extract_graph(edgelist, fake_node, node_num):
node_list = range(node_num+1)[1:]
node_set = set(node_list)
adj_1 = sp.coo_matrix((np.ones(len(edgelist)), (edgelist[:, 0], edgelist[:, 1])), shape=(edgelist.max()+1, edgelist.max()+1), dtype=np.float32)
adj_1 = adj_1 + adj_1.T.multiply(adj_1.T > adj_1) - adj_1.multiply(adj_1.T > adj_1)
adj_csr = adj_1.tocsr()
for i in np.arange(node_num):
for j in adj_csr[i].nonzero()[1]:
node_set.add(j)
node_set_2 = node_set
'''
node_set_2 = set(node_list)
for i in node_set:
for j in adj_csr[i].nonzero()[1]:
node_set_2.add(j)
'''
node_list = np.array(list(node_set_2))
node_list = np.sort(node_list)
adj_new = adj_csr[node_list,:]
node_mapping = dict(zip(node_list, range(0, len(node_list), 1)))
edge_list = []
for i in range(len(node_list)):
for j in adj_new[i].nonzero()[1]:
if j in node_list:
edge_list.append([i, node_mapping[j]])
edge_list = np.array(edge_list)
#adj_coo_new = sp.coo_matrix((np.ones(len(edge_list)), (edge_list[:,0], edge_list[:,1])), shape=(len(node_list), len(node_list)), dtype=np.float32)
label_new = np.array(list(map(lambda x: 1 if x in fake_node else 0, node_list)))
np.savetxt('data/twitter/sub_twitter_edges', edge_list,fmt='%d')
np.savetxt('data/twitter/sub_twitter_labels', label_new,fmt='%d')
return
def load_data_twitter():
adj_path = 'data/twitter/twitter.csv'
fake_id_path = 'data/twitter/twitter_fake_ids.csv'
adj = np.loadtxt(adj_path, delimiter=',', skiprows=1)#(total: 16011444 edges, 5384162 nodes)
adj = adj.astype(int)
adj = np.array(adj,dtype=int)
fake_node = np.genfromtxt(fake_id_path, delimiter=',',skip_header=1, usecols=(0), dtype=int)#(12437)
#'''#using broad walk
if False:
Extract_graph(adj, fake_node, node_num=1000)
#'''
'''generated edgelist for deepwalk for embedding
np.savetxt('data/twitter/twitter_edges', adj,fmt='%d')
'''
#process adj:
adj[adj>50000] = 0 #save top 50000 node, start from 1
adj = sp.coo_matrix((np.ones(len(adj)), (adj[:, 0], adj[:, 1])), shape=(adj.max()+1, adj.max()+1), dtype=np.float32)
adj = np.array(adj.todense())
adj = adj[1:, 1:]
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = adj.tocoo()
fake_node = np.sort(fake_node)
fake_node = fake_node[fake_node<=50000]
fake_id = fake_node-1
#process label:
labels = np.zeros((50000,),dtype=int)
labels[fake_id] = 1
#filtering out outliers:
node_degree = adj.sum(axis=1)
chosen_idx = np.arange(50000)[node_degree>=4]
ipdb.set_trace()
#embed need to be read sequentially, due to the size
embed = np.genfromtxt('data/twitter/twitter.embeddings_64', max_rows=50000)
feature = np.zeros((embed.shape[0],embed.shape[1]-1))
feature[embed[:,0].astype(int),:] = embed[:,1:]
features = normalize(feature)
adj = adj[chosen_idx,:][:,chosen_idx] #shape:
labels = labels[chosen_idx] #shape:
features = features[chosen_idx]
features = torch.FloatTensor(np.array(features.todense()))
labels = torch.LongTensor(labels)
utils.print_edges_num(adj.todense(), labels)
adj = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels
def load_sub_data_twitter():
adj_path = 'data/twitter/sub_twitter_edges'
fake_id_path = 'data/twitter/sub_twitter_labels'
adj = np.loadtxt(adj_path, delimiter=' ', dtype=int)#
adj = np.array(adj,dtype=int)
labels = np.genfromtxt(fake_id_path, dtype=int)#(63167)
#process adj:
adj = sp.coo_matrix((np.ones(len(adj)), (adj[:, 0], adj[:, 1])), shape=(adj.max()+1, adj.max()+1), dtype=np.float32)
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
#filtering out outliers:
node_degree = np.array(adj.sum(axis=1)).reshape(-1)
chosen_idx = np.arange(adj.shape[0])[node_degree>=4]#44982 nodes were left
#embed need to be read sequentially, due to the size
embed = np.genfromtxt('data/twitter/sub_node_embedding_64', skip_header=1)
feature = np.zeros((embed.shape[0],embed.shape[1]-1))
feature[embed[:,0].astype(int),:] = embed[:,1:]
features = normalize(feature)
features = torch.FloatTensor(np.array(features))
labels = torch.LongTensor(labels)
utils.print_edges_num(adj.todense(), labels)
adj = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels
def load_data_Blog():#
#--------------------
#
#--------------------
mat = loadmat('data/BlogCatalog/blogcatalog.mat')
adj = mat['network']
label = mat['group']
embed = np.loadtxt('data/BlogCatalog/blogcatalog.embeddings_64')
feature = np.zeros((embed.shape[0],embed.shape[1]-1))
feature[embed[:,0].astype(int),:] = embed[:,1:]
features = normalize(feature)
labels = np.array(label.todense().argmax(axis=1)).squeeze()
labels[labels>16] = labels[labels>16]-1
print("change labels order, imbalanced classes to the end.")
#ipdb.set_trace()
labels = refine_label_order(labels)
features = torch.FloatTensor(features)
labels = torch.LongTensor(labels)
#adj = torch.FloatTensor(np.array(adj.todense()))
adj = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels
def refine_label_order(labels):
max_label = labels.max()
j = 0
for i in range(labels.max(),0,-1):
if sum(labels==i) >= IMBALANCE_THRESH and i>j:
while sum(labels==j) >= IMBALANCE_THRESH and i>j:
j = j+1
if i > j:
head_ind = labels == j
tail_ind = labels == i
labels[head_ind] = i
labels[tail_ind] = j
j = j+1
else:
break
elif i <= j:
break
return labels
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def norm_sparse(adj):#normalize a torch dense tensor for GCN, and change it into sparse.
adj = adj + torch.eye(adj.shape[0]).to(adj)
rowsum = torch.sum(adj,1)
r_inv = 1/rowsum
r_inv[torch.isinf(r_inv)] = 0.
new_adj = torch.mul(r_inv.reshape(-1,1), adj)
indices = torch.nonzero(new_adj).t()
values = new_adj[indices[0], indices[1]] # modify this based on dimensionality
return torch.sparse.FloatTensor(indices, values, new_adj.size())
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def find_shown_index(adj, center_ind, steps = 2):
seen_nodes = {}
shown_index = []
if isinstance(center_ind, int):
center_ind = [center_ind]
for center in center_ind:
shown_index.append(center)
if center not in seen_nodes:
seen_nodes[center] = 1
start_point = center_ind
for step in range(steps):
new_start_point = []
candid_point = set(adj[start_point,:].reshape(-1, adj.shape[1]).nonzero()[:,1])
for i, c_p in enumerate(candid_point):
if c_p.item() in seen_nodes:
pass
else:
seen_nodes[c_p.item()] = 1
shown_index.append(c_p.item())
new_start_point.append(c_p)
start_point = new_start_point
return shown_index