-
Notifications
You must be signed in to change notification settings - Fork 1
/
align.cpp
235 lines (187 loc) · 8.49 KB
/
align.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
Copyright 2018 Yatish Turakhia, Gill Bejerano and William Dally
Copyright 2018 Tong Dong Qiu
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "align.h"
#include <stdio.h>
std::vector<std::queue<int> > Align_Batch(std::vector<std::string> ref_seqs, \
std::vector<std::string> query_seqs, \
std::vector<int> ref_lens, std::vector<int> query_lens, \
int match_score, int mismatch_score, int gap_open, int gap_extend, \
std::vector<int> ref_poss_b, std::vector<int> query_poss_b, \
std::vector<char> reverses, std::vector<char> firsts, int early_terminate){
std::vector<std::queue<int> > result;
int BATCH_SIZE = ref_seqs.size();
for(int j = 0; j < BATCH_SIZE; ++j){
char *ref_seq = (char*)ref_seqs[j].c_str();
char *query_seq = (char*)query_seqs[j].c_str();
long long int ref_len = ref_lens[j];
long long int query_len = query_lens[j];
int ref_pos = ref_poss_b[j];
int query_pos = query_poss_b[j];
bool reverse = (reverses[j] == 1);
bool first = (firsts[j] == 1);
std::queue<int> BT_states;
if(ref_len == -1){
// push empty queue, otherwise GACT_Batch will misinterpret BT_statess
result.push_back(BT_states);
continue;
}
BT_states = AlignWithBT(ref_seq, ref_len, query_seq, query_len, \
match_score, mismatch_score, gap_open, gap_extend, \
query_pos, ref_pos, reverse, first, early_terminate);
result.push_back(BT_states);
}
return result;
}
//return the output of the int queue
std::queue<int> AlignWithBT(char* ref_seq, long long int ref_len, \
char* query_seq, long long int query_len, \
int match_score, int mismatch_score, int gap_open, int gap_extend, \
int query_pos, int ref_pos, bool reverse, bool first, int early_terminate) {
// terminate the prgram if the R or Q length is greater than the tile size
assert(ref_len < MAX_TILE_SIZE);
assert(query_len < MAX_TILE_SIZE);
//2 copies of the vectors for the previous/new values
//max of all other
int h_matrix_wr[MAX_TILE_SIZE + 1];
//matches
int m_matrix_wr[MAX_TILE_SIZE + 1];
//vector for insertion penalties
int i_matrix_wr[MAX_TILE_SIZE + 1];
//vector for deletion penalties
int d_matrix_wr[MAX_TILE_SIZE + 1];
int h_matrix_rd[MAX_TILE_SIZE + 1];
int m_matrix_rd[MAX_TILE_SIZE + 1];
int i_matrix_rd[MAX_TILE_SIZE + 1];
int d_matrix_rd[MAX_TILE_SIZE + 1];
//operands for alignment in the matrix - according to Smith Waterman's rules
std::vector< std::vector<AlnOp> > dir_matrix(MAX_TILE_SIZE+1, std::vector<AlnOp>(MAX_TILE_SIZE+1,0));
for (int i = 0; i < query_len + 1; i++) {
h_matrix_rd[i] = 0;
m_matrix_rd[i] = 0;
i_matrix_rd[i] = -INF;
d_matrix_rd[i] = -INF;
h_matrix_wr[i] = 0;
m_matrix_wr[i] = 0;
i_matrix_wr[i] = -INF;
d_matrix_wr[i] = -INF;
}
//initialize the operands int he direction matrix for the first row and first
//column
for (int i = 0; i < ref_len + 1; i++) {
dir_matrix[i][0] = ZERO_OP;
}
for (int j = 0; j < query_len + 1; j++) {
dir_matrix[0][j] = ZERO_OP;
}
int max_score = 0;
int pos_score = 0;
int max_i = 0;
int max_j = 0;
for (int i = 1; i < ref_len + 1; i++) {
for (int k = 1; k < MAX_TILE_SIZE + 1; k++) {
m_matrix_rd[k] = m_matrix_wr[k];
h_matrix_rd[k] = h_matrix_wr[k];
i_matrix_rd[k] = i_matrix_wr[k];
d_matrix_rd[k] = d_matrix_wr[k];
}
//j - row number; i - column number
for (int j = 1; j < query_len + 1; j++) {
// reverse indicates the direction of the alignment
// 1: towards position = 0, 0: towards position = length
#ifdef BATCH
char ref_nt = (reverse) ? ref_seq[i-1] : ref_seq[ref_len-i];
char query_nt = (reverse) ? query_seq[j-1] : query_seq[query_len-j];
#else
char ref_nt = (reverse) ? ref_seq[ref_len-i] : ref_seq[i-1];
char query_nt = (reverse) ? query_seq[query_len-j] : query_seq[j-1];
#endif
int match = (query_nt == ref_nt) ? match_score : mismatch_score;
//columnwise calculations
// find out max value
if (m_matrix_rd[j-1] > i_matrix_rd[j-1] && m_matrix_rd[j-1] > d_matrix_rd[j-1]) {
m_matrix_wr[j] = m_matrix_rd[j-1] + match;
} else if (i_matrix_rd[j-1] > d_matrix_rd[j-1]) {
m_matrix_wr[j] = i_matrix_rd[j-1] + match;
} else {
m_matrix_wr[j] = d_matrix_rd[j-1] + match;
}
if (m_matrix_wr[j] < 0) {
m_matrix_wr[j] = 0;
}
int ins_open = m_matrix_rd[j] + gap_open;
int ins_extend = i_matrix_rd[j] + gap_extend;
int del_open = m_matrix_wr[j-1] + gap_open;
int del_extend = d_matrix_wr[j-1] + gap_extend;
i_matrix_wr[j] = (ins_open > ins_extend) ? ins_open : ins_extend;
d_matrix_wr[j] = (del_open > del_extend) ? del_open : del_extend;
int max1 = m_matrix_wr[j] > i_matrix_wr[j] ? m_matrix_wr[j] : i_matrix_wr[j];
int max2 = d_matrix_wr[j] > 0 ? d_matrix_wr[j] : 0;
h_matrix_wr[j] = max1 > max2 ? max1 : max2;
(dir_matrix)[i][j] = ((m_matrix_wr[j] >= i_matrix_wr[j]) ? \
((m_matrix_wr[j] >= d_matrix_wr[j]) ? MATCH_OP : DELETE_OP) : \
((i_matrix_wr[j] >= d_matrix_wr[j]) ? INSERT_OP : DELETE_OP));
if ((m_matrix_wr[j] <= 0) && (i_matrix_wr[j] <= 0) && (d_matrix_wr[j] <= 0)) {
(dir_matrix)[i][j] = ZERO_OP;
}
(dir_matrix)[i][j] += (ins_open >= ins_extend) ? (2 << INSERT_OP) : 0;
(dir_matrix)[i][j] += (del_open >= del_extend) ? (2 << DELETE_OP) : 0;
if (h_matrix_wr[j] >= max_score) {
max_score = h_matrix_wr[j];
max_i = i;
max_j = j;
}
if ((i == ref_pos) && (j == query_pos)) {
pos_score = h_matrix_wr[j];
}
} // end for every query base
} // end for every ref base
std::queue<int> BT_states;
int i_curr=ref_pos, j_curr=query_pos;
int i_steps = 0, j_steps = 0;
int open = 0;
if (first) {
i_curr = max_i;
j_curr = max_j;
BT_states.push(max_score);
BT_states.push(i_curr);
BT_states.push(j_curr);
}
else {
BT_states.push(pos_score);
}
int state = dir_matrix[i_curr][j_curr] % 4;
int i = 4;
while (state != Z) {
if ((i_steps >= early_terminate) || (j_steps >= early_terminate)) { // || (i_steps - j_steps > 30) || (i_steps - j_steps < -30)) {
break;
}
BT_states.push(state);
i++;
if (state == M) {
char t = dir_matrix[i_curr-1][j_curr-1];
state = (dir_matrix[i_curr-1][j_curr-1] % 4);
i_curr--;
j_curr--;
i_steps++;
j_steps++;
}
else if (state == I) {
char t = dir_matrix[i_curr][j_curr];
state = (dir_matrix[i_curr][j_curr] & (2 << INSERT_OP)) ? M : I;
i_curr--;
i_steps++;
}
else if (state == D) {
char t = dir_matrix[i_curr][j_curr];
state = (dir_matrix[i_curr][j_curr] & (2 << DELETE_OP)) ? M : D;
j_curr--;
j_steps++;
}
}; // end while
return BT_states;
}