forked from Rhett98/dynamic_slam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer_dylo.py
183 lines (148 loc) · 6.73 KB
/
infer_dylo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# -*- coding:UTF-8 -*-
import os
import sys
import torch
import datetime
import torch.utils.data
import numpy as np
import time
from tqdm import tqdm
from configs import odometry_args
from tools.euler_tools import quat2mat
from tools.logger_tools import log_print, creat_logger
from kitti_pytorch import points_dataset
from dylo_model import pwclo_model, get_loss
from utils1.collate_functions import collate_pair_wo_label
args = odometry_args()
'''CREATE DIR'''
base_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(base_dir)
experiment_dir = os.path.join(base_dir, 'experiment')
if not os.path.exists(experiment_dir): os.makedirs(experiment_dir)
if not args.task_name:
file_dir = os.path.join(experiment_dir, '{}_EVAL_KITTI_{}'.format(args.model_name, str(
datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))))
else:
file_dir = os.path.join(experiment_dir, args.task_name)
if not os.path.exists(file_dir): os.makedirs(file_dir)
eval_dir = os.path.join(file_dir, 'eval')
if not os.path.exists(eval_dir): os.makedirs(eval_dir)
log_dir = os.path.join(file_dir, 'logs')
if not os.path.exists(log_dir): os.makedirs(log_dir)
'''LOG'''
def main():
global args
# eval_list = [0,1, 2,3,4, 5, 6, 7, 8,9,10]
eval_list = [3]
logger = creat_logger(log_dir, args.model_name)
logger.info('----------------------------------------TRAINING----------------------------------')
logger.info('PARAMETER ...')
logger.info(args)
model = pwclo_model(args, args.batch_size, args.H_input, args.W_input, False)
if args.multi_gpu is not None:
device_ids = [int(x) for x in args.multi_gpu.split(',')]
torch.backends.cudnn.benchmark = True
model = torch.nn.DataParallel(model, device_ids=device_ids)
model.cuda(device_ids[0])
log_print(logger, 'multi gpu are:' + str(args.multi_gpu))
else:
torch.backends.cudnn.benchmark = True
torch.cuda.set_device(args.gpu)
model.cuda()
log_print(logger, 'just one gpu is:' + str(args.gpu))
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
momentum=args.momentum)
elif args.optimizer == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, betas=(0.9, 0.999),
eps=1e-08, weight_decay=args.weight_decay)
optimizer.param_groups[0]['initial_lr'] = args.learning_rate
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_stepsize,
gamma=args.lr_gamma, last_epoch=-1)
checkpoint = torch.load(args.ckpt)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['opt_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler'])
log_print(logger, 'load model {}'.format(args.ckpt))
for item in eval_list:
dataset = points_dataset(
is_training = 0,
num_point = args.num_points,
data_dir_list = [item],
config = args
)
test_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.workers,
collate_fn=collate_pair_wo_label,
pin_memory=True,
worker_init_fn=lambda x: np.random.seed((torch.initial_seed()) % (2 ** 32))
)
line = 0
total_time = 0
for batch_id, data in tqdm(enumerate(test_loader), total=len(test_loader), smoothing=0.9):
torch.cuda.synchronize()
start_prepare = time.time()
pos2, pos1, sample_id, T_gt, T_trans, T_trans_inv, Tr = data
torch.cuda.synchronize()
#print('data_prepare_time: ', time.time() - start_prepare)
pos2 = [b.cuda() for b in pos2]
pos1 = [b.cuda() for b in pos1]
T_trans = T_trans.cuda().to(torch.float32)
T_trans_inv = T_trans_inv.cuda().to(torch.float32)
T_gt = T_gt.cuda().to(torch.float32)
model = model.eval()
with torch.no_grad():
torch.cuda.synchronize()
start_time = time.time()
l0_q, l0_t, l1_q, l1_t, l2_q, l2_t, l3_q, l3_t, pc1_ouput, q_gt, t_gt, w_x, w_q = model(pos2, pos1, T_gt, T_trans, T_trans_inv)
torch.cuda.synchronize()
#print('eval_one_time: ', time.time() - start_time)
torch.cuda.synchronize()
total_time += (time.time() - start_time)
pc1_sample_2048 = pc1_ouput.cpu()
l0_q = l0_q.cpu()
l0_t = l0_t.cpu()
pc1 = pc1_sample_2048.numpy()
pred_q = l0_q.numpy()
pred_t = l0_t.numpy()
# deal with a batch_size
for n0 in range(pc1.shape[0]):
cur_Tr = Tr[n0, :, :]
qq = pred_q[n0:n0 + 1, :]
qq = qq.reshape(4)
tt = pred_t[n0:n0 + 1, :]
tt = tt.reshape(3, 1)
RR = quat2mat(qq)
filler = np.array([0.0, 0.0, 0.0, 1.0])
filler = np.expand_dims(filler, axis=0) ##1*4
TT = np.concatenate([np.concatenate([RR, tt], axis=-1), filler], axis=0)
TT = np.matmul(cur_Tr, TT)
TT = np.matmul(TT, np.linalg.inv(cur_Tr))
if line == 0:
T_final = TT
T = T_final[:3, :]
T = T.reshape(1, 1, 12)
line += 1
else:
T_final = np.matmul(T_final, TT)
T_current = T_final[:3, :]
T_current = T_current.reshape(1, 1, 12)
T = np.append(T, T_current, axis=0)
avg_time = total_time / 4541
#print('avg_time: ', avg_time)
T = T.reshape(-1, 12)
fname_file = os.path.join(log_dir, str(item).zfill(2) + '_pred.npy')
fname_txt = os.path.join(log_dir, str(item).zfill(2) + '_pred.txt')
data_dir = os.path.join(eval_dir, 'odometry_' + str(item).zfill(2))
if not os.path.exists(data_dir):
os.makedirs(data_dir)
np.save(fname_file, T)
np.savetxt(fname_txt, T)
os.system('cp %s %s' % (fname_txt, data_dir)) ###SAVE THE txt FILE
# print('python evaluation.py --result_dir ' + data_dir + ' --eva_seqs ' + str(item).zfill(2) + '_pred')
os.system('python evaluation.py --result_dir ' + data_dir + ' --eva_seqs ' + str(item).zfill(2) + '_pred')
if __name__ == '__main__':
main()