-
Notifications
You must be signed in to change notification settings - Fork 3
/
save_model.py
60 lines (55 loc) · 2.54 KB
/
save_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import tensorflow as tf
from absl import app, flags, logging
from absl.flags import FLAGS
from core.yolov4 import YOLO, decode, filter_boxes
import core.utils as utils
from core.config import cfg
flags.DEFINE_string('weights', './data/yolov4.weights', 'path to weights file')
flags.DEFINE_string('output', './checkpoints/yolov4-416', 'path to output')
flags.DEFINE_boolean('tiny', False, 'is yolo-tiny or not')
flags.DEFINE_integer('input_size', 416, 'define input size of export model')
flags.DEFINE_float('score_thres', 0.2, 'define score threshold')
flags.DEFINE_string('framework', 'tf', 'define what framework do you want to convert (tf, trt, tflite)')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
def save_tf():
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3])
feature_maps = YOLO(input_layer, NUM_CLASS, FLAGS.model, FLAGS.tiny)
bbox_tensors = []
prob_tensors = []
if FLAGS.tiny:
for i, fm in enumerate(feature_maps):
if i == 0:
output_tensors = decode(fm, FLAGS.input_size // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework)
else:
output_tensors = decode(fm, FLAGS.input_size // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework)
bbox_tensors.append(output_tensors[0])
prob_tensors.append(output_tensors[1])
else:
for i, fm in enumerate(feature_maps):
if i == 0:
output_tensors = decode(fm, FLAGS.input_size // 8, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework)
elif i == 1:
output_tensors = decode(fm, FLAGS.input_size // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework)
else:
output_tensors = decode(fm, FLAGS.input_size // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE, FLAGS.framework)
bbox_tensors.append(output_tensors[0])
prob_tensors.append(output_tensors[1])
pred_bbox = tf.concat(bbox_tensors, axis=1)
pred_prob = tf.concat(prob_tensors, axis=1)
if FLAGS.framework == 'tflite':
pred = (pred_bbox, pred_prob)
else:
boxes, pred_conf = filter_boxes(pred_bbox, pred_prob, score_threshold=FLAGS.score_thres, input_shape=tf.constant([FLAGS.input_size, FLAGS.input_size]))
pred = tf.concat([boxes, pred_conf], axis=-1)
model = tf.keras.Model(input_layer, pred)
utils.load_weights(model, FLAGS.weights, FLAGS.model, FLAGS.tiny)
model.summary()
model.save(FLAGS.output)
def main(_argv):
save_tf()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass