generated from UBICenter/analysis-template
-
Notifications
You must be signed in to change notification settings - Fork 7
/
app.py
1161 lines (1049 loc) · 41.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import dash_bootstrap_components as dbc
import microdf as mdf
import os
from numerize import numerize
from components import make_html_label, set_options
# ---------------------------------------------------------------------------- #
# SECTION import pre-processed data #
# ---------------------------------------------------------------------------- #
# Import data from Ipums
person = pd.read_csv("person.csv.gz")
spmu = pd.read_csv("spmu.csv.gz")
# import baseline poverty gap, gini by state & us
all_state_stats = pd.read_csv("all_state_stats.csv.gz", index_col=0)
# import baseline white/black/child etc. poverty rates & population
demog_stats = pd.read_csv("demog_stats.csv.gz")
# Colors
BLUE = "#1976D2"
# create a list of all states, including "US" as a state
states_no_us = person.state.unique().tolist()
states_no_us.sort()
states = ["US"] + states_no_us
# ---------------------------------------------------------------------------- #
# SECTION dash components #
# ---------------------------------------------------------------------------- #
# ----------------------- SECTION Create 4 input cards ----------------------- #
cards = dbc.CardDeck(
[
# -------------- SECTION Card 1 state-dropdown component ------------- #
dbc.Card(
[
dbc.CardBody(
[
make_html_label("Select state:"),
dcc.Dropdown(
# define component_id for input of app@callback function
id="state-dropdown",
multi=False,
value="US",
# create a list of dicts of states and their labels
# to be selected by user in dropdown
options=[{"label": x, "value": x} for x in states],
),
html.Br(),
make_html_label("Reform level:"),
dcc.RadioItems(
id="level",
options=set_options(
{"Federal": "federal", "State": "state"}
),
value="federal",
labelStyle={"display": "block"},
inputStyle={"margin-right": "5px"},
),
]
),
],
# color="info",
outline=False,
),
# exclude/include from UBI checklist
dbc.Card(
[
dbc.CardBody(
[
make_html_label("Include in UBI:"),
dcc.Checklist(
id="include-checklist",
options=set_options(
{
"Non-citizens": "non_citizens",
"Children": "children",
"Adult": "adults",
}
),
# specify checked items
value=[
"adults",
"children",
"non_citizens",
],
inputStyle={"margin-right": "5px"},
labelStyle={"display": "block"},
),
]
),
],
outline=False,
),
# --- toggle here to next section to change deck size --- #
# ]
# )
# taxes_benefits_cards = dbc.CardDeck(
# [
# ----------------- SECTION Card 3 - Repeal Benefits ----------------- #
# define third card where the repeal benefits checklist is displayed
dbc.Card(
[
dbc.CardBody(
[
# label the card
make_html_label("Repeal benefits:"),
# use dash component to create checklist to choose
# which benefits to repeal
dcc.Checklist(
# this id string is a dash component_id
# and is referenced as in input in app.callback
id="benefits-checklist",
# 'options' here refers the selections available to the user in the
# checklist
options=set_options(
{
" Child Tax Credit": "ctc",
" Supplemental Security Income (SSI)": "incssi",
" SNAP (food stamps)": "spmsnap",
" Earned Income Tax Credit": "eitcred",
" Unemployment benefits": "incunemp",
" Energy subsidy (LIHEAP)": "spmheat",
}
),
# do not repeal benefits by default
value=[],
labelStyle={"display": "block"},
inputStyle={"margin-right": "5px"},
),
]
),
],
outline=False,
),
# -------------------- SECTION Card 2 - taxes ------------------- #
# tax slider
# allows user to repeal certain federal and state taxes
# component_id: "taxes-checklist"
# tax rate slider
# Allows user to adjust tax rate that determines ubi benefit amount
# component_id="agi-slider"
dbc.Card(
[
dbc.CardBody(
[
# define attributes of taxes-checklist component
make_html_label("Repeal current taxes:"),
html.Br(),
dcc.Checklist(
# define component id to be used in callback
id="taxes-checklist",
options=set_options(
{
"Income taxes": "fedtaxac",
"Employee side payroll": "fica",
}
),
value=[],
labelStyle={"display": "block"},
inputStyle={"margin-right": "5px"},
),
html.Br(),
# defines label/other HTML attributes of agi-slider component
make_html_label("Income tax rate:"),
dcc.Slider(
id="agi-slider",
min=0,
max=50,
step=1,
value=0,
tooltip={
"always_visible": True,
"placement": "bottom",
},
# define marker values to show increments on slider
marks={
0: {
"label": "0%",
},
10: {
"style": {"color": "#F8F8FF"},
},
20: {
"style": {"color": "#F8F8FF"},
},
30: {
"style": {"color": "#F8F8FF"},
},
40: {
"style": {"color": "#F8F8FF"},
},
50: {
"label": "50%",
},
},
),
html.Div(id="slider-output-container"),
]
),
html.Br(),
],
outline=False,
),
]
)
# --------------------- charts cards --------------------- #
charts = dbc.CardDeck(
[
dbc.Card(
dcc.Graph(
id="econ-graph",
figure={},
config={"displayModeBar": False},
),
),
dbc.Card(
dcc.Graph(
id="breakdown-graph",
figure={},
config={"displayModeBar": False},
),
outline=True,
),
]
)
# ------------------------------- summary card ------------------------------- #
# create the summary card that contains ubi amount, revenue, pct. better off
SUMMARY_OUTPUTS = [
"revenue-output", # Funds for UBI
"ubi-population-output", # UBI Population
"ubi-output", # Monthly UBI
"winners-output", # Percent better off
"resources-output", # Average change in resources per person
]
text = (
dbc.Card(
[
dbc.CardBody(
[
html.Div(
id=x,
style={
"text-align": "left",
"color": "black",
"fontSize": 18,
"font-family": "Roboto",
},
)
for x in SUMMARY_OUTPUTS
]
),
],
color="white",
outline=False,
),
)
# ---------------------------------------------------------------------------- #
# SECTION app #
# ---------------------------------------------------------------------------- #
# Get base pathname from an environment variable that CS will provide.
url_base_pathname = os.environ.get("URL_BASE_PATHNAME", "/")
app = dash.Dash(
__name__,
external_stylesheets=[
dbc.themes.FLATLY,
"https://fonts.googleapis.com/css2?family=Roboto:wght@300;400&display=swap",
"/assets/style.css",
],
# tell dash to use mobile version of something
meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}],
# Pass the url base pathname to Dash.
url_base_pathname=url_base_pathname,
)
server = app.server # the server object
# Design the app
app.layout = html.Div(
[
# navbar (top)
dbc.Navbar(
[
html.A(
dbc.Row(
[
dbc.Col(
# insert logo
html.Img(
src="https://raw.githubusercontent.com/UBICenter/ubicenter.org/master/assets/images/logos/wide-blue.jpg",
height="30px",
),
),
],
align="center",
# gutters are used to separate the navbar items from the content area
no_gutters=True,
),
href="https://www.ubicenter.org",
target="blank",
),
dbc.NavbarToggler(id="navbar-toggler"),
]
),
html.Br(),
dbc.Row(
[
dbc.Col(
html.H1(
"Basic Income Builder",
id="header",
style={
"text-align": "center",
"color": "#1976D2",
"fontSize": 50,
"letter-spacing": "2px",
"font-weight": 300,
"font-family": "Roboto",
},
),
width={"size": "auto"},
md={"size": 8, "offset": 2},
),
]
),
html.Br(),
# app description
dbc.Row(
[
dbc.Col(
html.H4(
"Fund a universal basic income by adding taxes, replacing taxes, and/or repealing benefits",
style={
"text-align": "center",
"color": "#212121",
"fontSize": 25,
"font-family": "Roboto",
},
),
width={"size": "auto"},
md={"size": 8, "offset": 2},
),
]
),
# second row of app description
dbc.Row(
[
dbc.Col(
html.H4(
"Any surplus is shared equally across all eligible recipients",
style={
"text-align": "center",
"color": "#212121",
"fontSize": 25,
"font-family": "Roboto",
},
),
width={"size": "auto"},
md={"size": 8, "offset": 2},
),
]
),
html.Br(),
# row with one column containing input cards
dbc.Row(
[
dbc.Col(
cards,
width={
"size": 12,
},
md={"size": 10, "offset": 1},
),
]
),
html.Br(),
dbc.Row(
[
dbc.Col(
html.H1(
"Results of your reform:",
style={
"text-align": "center",
"color": "#1976D2",
"fontSize": 30,
"font-family": "Roboto",
},
),
width={"size": "auto"},
md={"size": 6, "offset": 3},
),
]
),
# contains simulation results in text form
dbc.Row(
[
dbc.Col(
text,
width={
"size": "auto",
},
md={"size": 6, "offset": 3},
)
]
),
html.Br(),
# ---------------- contains charts --------------- #
dbc.Row(
[
dbc.Col(
charts,
width={
"size": 12,
},
md={"size": 10, "offset": 1},
),
],
),
# 6 line breaks at the end of the page to make it look nicer :)
html.Br(),
html.Br(),
html.Br(),
html.Br(),
html.Br(),
# footnote explanation of data source and modeling assumptions
dbc.Row(
[
dbc.Col(
html.H4(
[
"Source: 2017-2019 Current Population Survey March Supplement. ",
"This dataset is known to underestimate benefit receipt and high incomes. ",
"No behavioral responses are assumed. ",
],
style={
"text-align": "left",
"color": "gray",
"fontSize": 12,
"font-family": "Roboto",
},
),
width={
"size": "auto",
},
md={"size": 8, "offset": 2},
),
]
),
# link to paper
dbc.Row(
[
dbc.Col(
html.H4(
[
"To see a detailed explanation of our simulation, see ",
html.A(
"our paper.",
href="https://www.ubicenter.org/introducing-basic-income-builder",
target="blank",
),
],
style={
"text-align": "left",
"color": "gray",
"fontSize": 12,
"font-family": "Roboto",
},
),
width={
"size": "auto",
},
md={"size": 8, "offset": 2},
),
]
),
# link to contact email and github issue tracker
dbc.Row(
[
dbc.Col(
html.H4(
[
"Questions or feedback? ",
"Email ",
html.A(
href="mailto:[email protected]",
),
" or file an issue at ",
html.A(
"github.com/UBICenter/us-calc/issues",
href="http://github.com/UBICenter/us-calc/issues",
),
],
style={
"text-align": "left",
"color": "gray",
"fontSize": 12,
"font-family": "Roboto",
},
),
width={
"size": "auto",
# "offset": 2
},
md={"size": 8, "offset": 2},
),
]
),
html.Br(),
html.Br(),
]
)
# ---------------------------------------------------------------------------- #
# SECTION callbacks #
# ---------------------------------------------------------------------------- #
@app.callback(
Output(component_id="ubi-output", component_property="children"),
Output(component_id="revenue-output", component_property="children"),
Output(component_id="ubi-population-output", component_property="children"),
Output(component_id="winners-output", component_property="children"),
Output(component_id="resources-output", component_property="children"),
Output(component_id="econ-graph", component_property="figure"),
Output(component_id="breakdown-graph", component_property="figure"),
Input(component_id="state-dropdown", component_property="value"),
Input(component_id="level", component_property="value"),
Input(component_id="agi-slider", component_property="value"),
Input(component_id="benefits-checklist", component_property="value"),
Input(component_id="taxes-checklist", component_property="value"),
Input(component_id="include-checklist", component_property="value"),
)
# TODO one function to translate args to params, another to run the function, another to return the output
def ubi(state_dropdown, level, agi_tax, benefits, taxes, include):
"""this does everything from microsimulation to figure creation.
Dash does something automatically where it takes the input arguments
in the order given in the @app.callback decorator
Args:
state_dropdown: takes input from callback input, component_id="state-dropdown"
level: component_id="level"
agi_tax: component_id="agi-slider"
benefits: component_id="benefits-checklist"
taxes: component_id="taxes-checklist"
include: component_id="include-checklist"
Returns:
ubi_line: outputs to "ubi-output" in @app.callback
revenue_line: outputs to "revenue-output" in @app.callback
ubi_population_line: outputs to "revenue-output" in @app.callback
winners_line: outputs to "winners-output" in @app.callback
resources_line: outputs to "resources-output" in @app.callback
fig: outputs to "econ-graph" in @app.callback
fig2: outputs to "breakdown-graph" in @app.callback
"""
# -------------------- calculations based on reform level -------------------- #
# if the "Reform level" selected by the user is federal
if level == "federal":
# combine taxes and benefits checklists into one list to be used to
# subset spmu dataframe
taxes_benefits = taxes + benefits
# initialize new resources column with old resources as baseline
spmu["new_resources"] = spmu.spmtotres
# initialize revenue at zero
revenue = 0
# Calculate the new revenue and spmu resources from tax and benefit change
for tax_benefit in taxes_benefits:
# subtract taxes and benefits that have been changed from spm unit's resources
spmu.new_resources -= spmu[tax_benefit]
# add that same value to revenue
revenue += mdf.weighted_sum(spmu, tax_benefit, "spmwt")
# if "Income taxes" = ? and "child_tax_credit" = ?
# in taxes/benefits checklist
if ("fedtaxac" in taxes_benefits) & ("ctc" in taxes_benefits):
spmu.new_resources += spmu.ctc
revenue -= mdf.weighted_sum(spmu, "ctc", "spmwt")
if ("fedtaxac" in taxes_benefits) & ("eitcred" in taxes_benefits):
spmu.new_resources += spmu.eitcred
revenue -= mdf.weighted_sum(spmu, "eitcred", "spmwt")
# Calculate the new taxes from flat tax on AGI
tax_rate = agi_tax / 100
spmu["new_taxes"] = np.maximum(spmu.adjginc, 0) * tax_rate
# subtract new taxes from new resources
spmu.new_resources -= spmu.new_taxes
# add new revenue when new taxes are applied on spmus, multiplied by weights
revenue += mdf.weighted_sum(spmu, "new_taxes", "spmwt")
# Calculate the total UBI a spmu recieves based on exclusions
spmu["numper_ubi"] = spmu.numper
# TODO make into linear equation on one line using array of some kind
if "children" not in include:
# subtract the number of children from the number of
# people in spm unit receiving ubi benefit
spmu["numper_ubi"] -= spmu.child
if "non_citizens" not in include:
spmu["numper_ubi"] -= spmu.non_citizen
if ("children" not in include) and ("non_citizens" not in include):
spmu["numper_ubi"] += spmu.non_citizen_child
if "adults" not in include:
spmu["numper_ubi"] -= spmu.adult
if ("adults" not in include) and ("non_citizens" not in include):
spmu["numper_ubi"] += spmu.non_citizen_adult
# Assign UBI
ubi_population = (spmu.numper_ubi * spmu.spmwt).sum()
ubi_annual = revenue / ubi_population
spmu["total_ubi"] = ubi_annual * spmu.numper_ubi
# Calculate change in resources
spmu.new_resources += spmu.total_ubi
spmu["new_resources_per_person"] = spmu.new_resources / spmu.numper
# Sort by state
# NOTE: the "target" here refers to the population being
# measured for gini/poverty rate/etc.
# I.e. the total population of the state/country and
# INCLUDING those excluding form recieving ubi payments
# state here refers to the selection from the drop down, not the reform level
if state_dropdown == "US":
target_spmu = spmu
else:
target_spmu = spmu[spmu.state == state_dropdown]
# if the "Reform level" dropdown selected by the user is State
if level == "state":
# Sort by state
if state_dropdown == "US":
target_spmu = spmu
else:
target_spmu = spmu[spmu.state == state_dropdown]
# Initialize
target_spmu["new_resources"] = target_spmu.spmtotres
revenue = 0
# Change income tax repeal to state level
if "fedtaxac" in taxes:
target_spmu.new_resources -= target_spmu.stataxac
revenue += mdf.weighted_sum(target_spmu, "stataxac", "spmwt")
# Calculate change in tax revenue
tax_rate = agi_tax / 100
target_spmu["new_taxes"] = target_spmu.adjginc * tax_rate
target_spmu.new_resources -= target_spmu.new_taxes
revenue += mdf.weighted_sum(target_spmu, "new_taxes", "spmwt")
# Calculate the total UBI a spmu recieves based on exclusions
target_spmu["numper_ubi"] = target_spmu.numper
if "children" not in include:
target_spmu["numper_ubi"] -= target_spmu.child
if "non_citizens" not in include:
target_spmu["numper_ubi"] -= target_spmu.non_citizen
if ("children" not in include) and ("non_citizens" not in include):
target_spmu["numper_ubi"] += target_spmu.non_citizen_child
if "adults" not in include:
target_spmu["numper_ubi"] -= target_spmu.adult
if ("adults" not in include) and ("non_citizens" not in include):
target_spmu["numper_ubi"] += target_spmu.non_citizen_adult
# Assign UBI
ubi_population = (target_spmu.numper_ubi * target_spmu.spmwt).sum()
ubi_annual = revenue / ubi_population
target_spmu["total_ubi"] = ubi_annual * target_spmu.numper_ubi
# Calculate change in resources
target_spmu.new_resources += target_spmu.total_ubi
target_spmu["new_resources_per_person"] = (
target_spmu.new_resources / target_spmu.numper
)
# NOTE: code after this applies to both reform levels
# Merge and create target_persons -
# NOTE: the "target" here refers to the population being
# measured for gini/poverty rate/etc.
# I.e. the total population of the state/country and
# INCLUDING those excluding form recieving ubi payments
sub_spmu = target_spmu[
["spmfamunit", "year", "new_resources", "new_resources_per_person"]
]
target_persons = person.merge(sub_spmu, on=["spmfamunit", "year"])
# filter demog_stats for selected state from dropdown
baseline_demog = demog_stats[demog_stats.state == state_dropdown]
# TODO: return dictionary of results instead of return each variable
def return_demog(demog, metric):
"""
retrieve pre-processed data by demographic
args:
demog - string one of
['person', 'adult', 'child', 'black', 'white',
'hispanic', 'pwd', 'non_citizen', 'non_citizen_adult',
'non_citizen_child']
metric - string, one of ['pov_rate', 'pop']
returns:
value - float
"""
# NOTE: baseline_demog is a dataframe with global scope
value = baseline_demog.loc[
(baseline_demog["demog"] == demog) & (baseline_demog["metric"] == metric),
"value",
# NOTE: returns the first value as a float, be careful if you redefine baseline_demog
].values[0]
return value
population = return_demog(demog="person", metric="pop")
child_population = return_demog(demog="child", metric="pop")
non_citizen_population = return_demog(demog="non_citizen", metric="pop")
non_citizen_child_population = return_demog(demog="non_citizen_child", metric="pop")
# filter all state stats gini, poverty_gap, etc. for dropdown state
baseline_all_state_stats = all_state_stats[all_state_stats.index == state_dropdown]
def return_all_state(metric):
"""filter baseline_all_state_stats and return value of select metric
Keyword arguments:
metric - string, one of 'poverty_gap', 'gini', 'total_resources'
returns:
value- float
"""
return baseline_all_state_stats[metric].values[0]
# Calculate total change in resources
original_total_resources = return_all_state("total_resources")
# DO NOT PREPROCESS, new_resources
new_total_resources = (target_spmu.new_resources * target_spmu.spmwt).sum()
change_total_resources = new_total_resources - original_total_resources
change_pp = change_total_resources / population
original_poverty_rate = return_demog("person", "pov_rate")
original_poverty_gap = return_all_state("poverty_gap")
# define orignal gini coefficient
original_gini = return_all_state("gini")
# function to calculate rel difference between one number and another
def rel_change(new, old, round=3):
return ((new - old) / old).round(round)
# Calculate poverty gap
target_spmu["new_poverty_gap"] = np.where(
target_spmu.new_resources < target_spmu.spmthresh,
target_spmu.spmthresh - target_spmu.new_resources,
0,
)
poverty_gap = mdf.weighted_sum(target_spmu, "new_poverty_gap", "spmwt")
poverty_gap_change = rel_change(poverty_gap, original_poverty_gap)
# Calculate the change in poverty rate
target_persons["poor"] = target_persons.new_resources < target_persons.spmthresh
total_poor = (target_persons.poor * target_persons.asecwt).sum()
poverty_rate = total_poor / population
poverty_rate_change = rel_change(poverty_rate, original_poverty_rate)
# Calculate change in Gini
gini = mdf.gini(target_persons, "new_resources_per_person", "asecwt")
gini_change = rel_change(gini, original_gini, 3)
# Calculate percent winners
target_persons["winner"] = target_persons.new_resources > target_persons.spmtotres
total_winners = (target_persons.winner * target_persons.asecwt).sum()
percent_winners = (total_winners / population * 100).round(1)
# -------------- calculate all of the poverty breakdown numbers -------------- #
# Calculate the new poverty rate for each demographic
def pv_rate(column):
return mdf.weighted_mean(
target_persons[target_persons[column]], "poor", "asecwt"
)
# Round all numbers for display in hover
def hover_string(metric, round_by=1):
"""formats 0.121 to 12.1%"""
string = str(round(metric * 100, round_by)) + "%"
return string
DEMOGS = ["child", "adult", "pwd", "white", "black", "hispanic"]
# create dictionary for demographic breakdown of poverty rates
pov_breakdowns = {
# return precomputed baseline poverty rates
"original_rates": {demog: return_demog(demog, "pov_rate") for demog in DEMOGS},
"new_rates": {demog: pv_rate(demog) for demog in DEMOGS},
}
# add poverty rate changes to dictionary
pov_breakdowns["changes"] = {
# Calculate the percent change in poverty rate for each demographic
demog: rel_change(
pov_breakdowns["new_rates"][demog],
pov_breakdowns["original_rates"][demog],
)
for demog in DEMOGS
}
# create string for hover template
pov_breakdowns["strings"] = {
demog: "Original "
+ demog
+ " poverty rate: "
+ hover_string(pov_breakdowns["original_rates"][demog])
+ "<br><extra></extra>"
+ "New "
+ demog
+ " poverty rate: "
+ hover_string(pov_breakdowns["new_rates"][demog])
for demog in DEMOGS
}
# format original and new overall poverty rate
original_poverty_rate_string = hover_string(original_poverty_rate)
poverty_rate_string = hover_string(poverty_rate)
original_poverty_gap_billions = "{:,}".format(int(original_poverty_gap / 1e9))
poverty_gap_billions = "{:,}".format(int(poverty_gap / 1e9))
original_gini_string = str(round(original_gini, 3))
gini_string = str(round(gini, 3))
# --------------SECTION populates "Results of your reform:" ------------ #
# Convert UBI and winners to string for title of chart
ubi_string = str("{:,}".format(int(round(ubi_annual / 12))))
# populates Monthly UBI
ubi_line = "Monthly UBI: $" + ubi_string
# populates 'Funds for UBI'
revenue_line = "Funds for UBI: $" + numerize.numerize(revenue, 1)
# populates population and revenue for UBI if state selected from dropdown
if state_dropdown != "US":
# filter for selected state
state_spmu = target_spmu[target_spmu.state == state_dropdown]
# calculate population of state recieving UBI
state_ubi_population = (state_spmu.numper_ubi * state_spmu.spmwt).sum()
ubi_population_line = "UBI population: " + numerize.numerize(
state_ubi_population, 1
)
state_revenue = ubi_annual * state_ubi_population
revenue_line = (
"Funds for UBI ("
+ state_dropdown
+ "): $"
+ numerize.numerize(state_revenue, 1)
)
else:
ubi_population_line = "UBI population: " + numerize.numerize(ubi_population, 1)
winners_line = "Percent better off: " + str(percent_winners) + "%"
resources_line = "Average change in resources per person: $" + "{:,}".format(
int(change_pp)
)
# ---------- populate economic breakdown bar chart ------------- #
# Create x-axis labels for each chart
econ_fig_x_lab = ["Poverty rate", "Poverty gap", "Gini index"]
econ_fig_cols = [poverty_rate_change, poverty_gap_change, gini_change]
econ_fig = go.Figure(
[
go.Bar(
x=econ_fig_x_lab,
y=econ_fig_cols,
text=econ_fig_cols,
hovertemplate=[
# poverty rates
"Original poverty rate: "
+ original_poverty_rate_string
+ "<br><extra></extra>"
"New poverty rate: " + poverty_rate_string,
# poverty gap
"Original poverty gap: $"
+ original_poverty_gap_billions
+ "B<br><extra></extra>"
"New poverty gap: $" + poverty_gap_billions + "B",
# gini
"Original Gini index: <extra></extra>"
+ original_gini_string
+ "<br>New Gini index: "
+ gini_string,
],
marker_color=BLUE,
)
]
)
# Edit text and display the UBI amount and percent winners in title
econ_fig.update_layout(
uniformtext_minsize=10,
uniformtext_mode="hide",
plot_bgcolor="white",
title_text="Economic overview",
title_x=0.5,
hoverlabel_align="right",
font_family="Roboto",
title_font_size=20,
paper_bgcolor="white",
hoverlabel=dict(bgcolor="white", font_size=14, font_family="Roboto"),
yaxis_tickformat="%",
)
econ_fig.update_traces(texttemplate="%{text:.1%f}", textposition="auto")
econ_fig.update_xaxes(
tickangle=45,
title_text="",
tickfont={"size": 14},
title_standoff=25,
title_font=dict(size=14, family="Roboto", color="black"),
)
econ_fig.update_yaxes(
tickprefix="",
tickfont={"size": 14},
title_standoff=25,
title_font=dict(size=14, family="Roboto", color="black"),
)
# ------------------ populate poverty breakdown charts ---------------- #
breakdown_fig_x_lab = [
"Child",
"Adult",
"Has disability",
"White",
"Black",
"Hispanic",
]
breakdown_fig_cols = [pov_breakdowns["changes"][demog] for demog in DEMOGS]
hovertemplate = [pov_breakdowns["strings"][demog] for demog in DEMOGS]
breakdown_fig = go.Figure(
[
go.Bar(
x=breakdown_fig_x_lab,
y=breakdown_fig_cols,
text=breakdown_fig_cols,
hovertemplate=hovertemplate,
marker_color=BLUE,
)
]
)
breakdown_fig.update_layout(
uniformtext_minsize=10,
uniformtext_mode="hide",
plot_bgcolor="white",
title_text="Poverty rate breakdown",
title_x=0.5,
hoverlabel_align="right",
font_family="Roboto",
title_font_size=20,
paper_bgcolor="white",
hoverlabel=dict(bgcolor="white", font_size=14, font_family="Roboto"),
yaxis_tickformat="%",
)
breakdown_fig.update_traces(texttemplate="%{text:.1%f}", textposition="auto")