-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
247 lines (205 loc) · 7.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
'''import argparse
import os
import shutil
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from dataset import load_dataset, BraTS2018List
from model import Modified3DUNet
import paths
def datestr():
now = time.localtime()
return '{:04}{:02}{:02}_{:02}{:02}'.format(now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min)
#print datestr()
# Training setting
parser = argparse.ArgumentParser(description='PyTorch Modified 3D U-Net Training')
#parser.add_argument('-m', '--modality', default='T1', choices = ['T1', 'T1c', 'T2', 'FLAIR'],
# type = str, help='modality of input 3d images (default:T1)')
#parser.add_argument('-w', '--workers', default=8, type=int,
# help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=300, type=int,
help='number of total epochs to run (default: 300)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=2, type=int,
help='batch size (default: 2)')
parser.add_argument('-g', '--gpu', default='0', type=str)
parser.add_argument('--lr', '--learning-rate', default=5e-4, type=float,
help='initial learning rate (default:5e-4)')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=985e-3, type=float,
help='weight decay (default: 985e-3)')
parser.add_argument('--print-freq', '-p', default=100, type=int,
help='print frequency (default: 100)')
parser.add_argument('-d', '--data', default=paths.preprocessed_training_data_folder,
type=str, help='The location of BRATS2015')
log_file = os.path.join("train_log.txt")
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s', filename=log_file)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
logging.getLogger('').addHandler(console)
global args, best_loss
best_loss = float('inf')
args = parser.parse_args()
#print os.environ['CUDA_VISIBLE_DEVICES']
dtype = torch.float
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# input = data.to(device)
# Loading the model
in_channels = 4
n_classes = 4
base_n_filter = 16
model = Modified3DUNet(in_channels, n_classes, base_n_filter).to(device)
#print args.data
# Split the training and testing dataset
test_size = 0.1
train_idx, test_idx = train_test_split(range(285), test_size = test_size)
train_data = load_dataset(train_idx)
test_data = load_dataset(test_idx)
#print all_data.keys()
# create your optimizer
#optimizer = optim.adam(net.parameteres(), lr=)
# in training loop:
optimizer.zero_grad()
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step
'''
import argparse
import time
import os
import logging
import random
import pickle
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
from torchvision import transforms,utils
from model import Modified3DUNet
from celldataset import cell_training,cell_training_patch
from utils import Parser, criterions
parser = argparse.ArgumentParser()
parser.add_argument('-cfg','--cfg',default = 'cell',type=str)
path = os.path.dirname(__file__)
# parse arguments
args = parser.parse_args()
args = Parser(args.cfg, args)
ckpts = args.makedir()
# setup logs
log = os.path.join(path,'logs',args.cfg+'.txt')
fmt = '%(asctime)s %(message)s'
logging.basicConfig(level=logging.INFO, format=fmt, filename=log)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(fmt))
logging.getLogger('').addHandler(console)
def main():
# setup environments and seeds
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
# setup networks
#Network = getattr(models, args.net)
#model = Network(**args.net_params)
model = Modified3DUNet(in_channels = 1,n_classes = 2, base_n_filter = 16)
model = model.cuda()
'''optimizer = getattr(torch.optim, args.opt)(
model.parameters(), **args.opt_params)'''
optimizer = torch.optim.Adam(model.parameters(),lr = 0.001,weight_decay =0.0001)
#optimizer = torch.optim.SGD(model.parameters(),lr = 0.1,momentum=0.9)
criterion = getattr(criterions, args.criterion)
msg = '-------------- New training session -----------------'
msg += '\n' + str(args)
logging.info(msg)
num_gpus = len(args.gpu.split(','))
args.batch_size *= num_gpus
args.workers *= num_gpus
args.opt_params['lr'] *= num_gpus
# create dataloaders
#Dataset = getattr(datasets, args.dataset)
dset = cell_training('/home/tom/Modified-3D-UNet-Pytorch/PNAS/')
train_loader = DataLoader(
dset, batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
file_name_best = os.path.join(ckpts, 'cell/model_best.tar')
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train_loss = train(
train_loader, model, criterion, optimizer, epoch)
# remember best lost and save checkpoint
ckpt = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
'train_loss': train_loss,
}
file_name = os.path.join(ckpts, 'model_last.tar')
torch.save(ckpt, file_name)
msg = 'Epoch: {:02d} Train loss {:.4f}'.format(
epoch+1, train_loss)
logging.info(msg)
def train(train_loader, model, criterion, optimizer, epoch):
losses = AverageMeter()
# switch to train mode
model.train()
torch.set_grad_enabled(True) # enable_grad
start = time.time()
for i, sample in enumerate(train_loader):
input = sample['data']
#print input.size()
target = sample['seg']
target = target.cuda(non_blocking=True)
# compute output
output = nn.parallel.data_parallel(model, input)
#output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
#losses.update(loss.item(), input.size(0))
losses.update(loss.item(), 1)
# compute gradient and do SGD step
optimizer.zero_grad()
#a = list(model.parameters())[0].clone()
loss.backward()
optimizer.step()
#b = list(model.parameters())[0].clone()
#print ('parameters change?',torch.equal(a.data,b.data))
return losses.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
# reduce learning rate by a factor of 10
if epoch+1 in args.schedule:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
if __name__ == '__main__':
main()