-
Notifications
You must be signed in to change notification settings - Fork 10
/
estimateDeltaLie.m
102 lines (95 loc) · 4.59 KB
/
estimateDeltaLie.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
%{
* Copyright (C) 2013-2025, The Regents of The University of Michigan.
* All rights reserved.
* This software was developed in the Biped Lab (https://www.biped.solutions/)
* under the direction of Jessy Grizzle, [email protected]. This software may
* be available under alternative licensing terms; contact the address above.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* The views and conclusions contained in the software and documentation are those
* of the authors and should not be interpreted as representing official policies,
* either expressed or implied, of the Regents of The University of Michigan.
*
* AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu)
* WEBSITE: https://www.brucerobot.com/
%}
function [delta, opt]= estimateDeltaLie(opt, data, plane, delta, num_beams, num_targets)
tic;
for ring = 1:num_beams
valid_target_num = num_targets;
for target = 1:num_targets
if size(data{target}(ring).points, 2) == 0
delta(ring).H = eye(4);
delta(ring).Affine = eye(4);
valid_target_num = valid_target_num -1;
end
end
if valid_target_num < num_targets
continue
end
% ring
% dbstop in estimateDelta.m at 13 if ring>=32
theta_x = optimvar('theta_x', 1, 1,'LowerBound',-0.5,'UpperBound',0.5); % 1x1
theta_y = optimvar('theta_y', 1, 1,'LowerBound',-0.5,'UpperBound',0.5); % 1x1
theta_z = optimvar('theta_z', 1, 1,'LowerBound',-0.5,'UpperBound',0.5); % 1x1
T = optimvar('T', 1, 3,'LowerBound', -0.1,'UpperBound',0.1); % 1x3
S = optimvar('S', 1, 1);
% theta_x = 0;
% theta_y = 0;
% theta_z = 0;
% S = 1;
% T = [0 0 0];
% cost = optimizeMultiIntrinsicCostLie(data, plane, ring, theta_x, theta_y, theta_z, T, S);
prob = optimproblem;
f = fcn2optimexpr(@optimizeMultiIntrinsicCostLie, data, plane, ring,...
theta_x, theta_y, theta_z, T, S);
prob.Objective = f;
x0.theta_x = opt.rpy_init(1);
x0.theta_y = opt.rpy_init(2);
x0.theta_z = opt.rpy_init(3);
x0.S = opt.scale_init;
x0.T = opt.T_init;
options = optimoptions('fmincon', 'MaxIter',5e2, 'Display','iter', 'TolX', 1e-6, 'TolFun', 1e-6, 'MaxFunctionEvaluations', 3e4);
max_trail = 5;
num_tried = 1;
status = 0;
while status <=0
[sol, fval, status, ~] = solve(prob, x0, 'Options', options);
if status <=0
warning("optimization failed")
end
num_tried = num_tried + 1;
if (num_tried + 1 > max_trail)
warning("tried too many time, optimization still failed, current status:")
disp(status)
break;
end
end
R_final = rotx(sol.theta_x) * roty(sol.theta_y) * rotz(sol.theta_z);
delta(ring).H = eye(4);
delta(ring).H(1:3, 1:3) = R_final;
delta(ring).H(1:3, 4) = sol.T;
Scaling = [sol.S 0 0 0
0 sol.S 0 0
0 0 sol.S 0
0 0 0 1];
delta(ring).Affine = Scaling * delta(ring).H;
delta(ring).opt_total_cost = fval;
opt.computation_time = toc;
end
end