forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
THCDeviceTensor-inl.cuh
416 lines (350 loc) · 11.2 KB
/
THCDeviceTensor-inl.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#include <assert.h>
namespace detail {
template <typename T, int N>
__host__ __device__ void copy(T to[N], T from[N]) {
for (int i = 0; i < N; ++i) {
to[i] = from[i];
}
}
} // namespace detail
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::THCDeviceTensor()
: data_(NULL) {
thc_static_assert(Dim > 0);
for (int i = 0; i < Dim; ++i) {
size_[i] = 0;
stride_[i] = (IndexT) 1;
}
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::
#ifdef _MSC_VER
THCDeviceTensor(DataPtrType data, const IndexT (&sizes)[Dim])
#else
THCDeviceTensor(DataPtrType data, const IndexT sizes[Dim])
#endif
: data_(data) {
thc_static_assert(Dim > 0);
for (int i = 0; i < Dim; ++i) {
size_[i] = sizes[i];
}
stride_[Dim - 1] = (IndexT) 1;
for (int i = Dim - 2; i >= 0; --i) {
stride_[i] = stride_[i + 1] * sizes[i + 1];
}
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::THCDeviceTensor(
#ifdef _MSC_VER
DataPtrType data, const IndexT (&sizes)[Dim], const IndexT (&strides)[Dim])
#else
DataPtrType data, const IndexT sizes[Dim], const IndexT strides[Dim])
#endif
: data_(data) {
thc_static_assert(Dim > 0);
for (int i = 0; i < Dim; ++i) {
size_[i] = sizes[i];
stride_[i] = strides[i];
}
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <int OtherDim>
__host__ __device__ bool
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::isSameSizeAndStride(
const THCDeviceTensor<T, OtherDim, IndexT, PtrTraits>& rhs) const {
if (Dim != OtherDim) {
return false;
}
for (int i = 0; i < Dim; ++i) {
if (size_[i] != rhs.size_[i]) {
return false;
}
if (stride_[i] != rhs.stride_[i]) {
return false;
}
}
return true;
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <typename U>
__host__ __device__ THCDeviceTensor<U, Dim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::cast() {
thc_static_assert(sizeof(U) == sizeof(T));
return THCDeviceTensor<U, Dim, IndexT, PtrTraits>(
reinterpret_cast<U*>(data_), size_, stride_);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <typename U>
__host__ __device__ const THCDeviceTensor<U, Dim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::cast() const {
thc_static_assert(sizeof(U) == sizeof(T));
return THCDeviceTensor<U, Dim, IndexT, PtrTraits>(
reinterpret_cast<U*>(data_), size_, stride_);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__ ptrdiff_t
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::numElements() const {
ptrdiff_t size = getSize(0);
for (int i = 1; i < Dim; ++i) {
size *= getSize(i);
}
return size;
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__ bool
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::isContiguous() const {
return isContiguousRange(0, Dim);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__ bool
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::isConsistentlySized(int i) const {
if (i == 0 && getStride(i) > 0 && getSize(i) > 0) {
return true;
} else if ((i > 0) && (i < Dim) && (getStride(i) > 0) &&
((getStride(i - 1) / getStride(i)) >= getSize(i))) {
return true;
}
return false;
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__ bool
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::isConsistentlySized() const {
for (int i = 0; i < Dim; ++i) {
if (!isConsistentlySized(i)) {
return false;
}
}
return true;
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__ bool
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::isContiguousRange(
int first, int last) const {
int64_t prevSize = last < Dim ? getStride(last) * getSize(last) : 1;
for (int i = last - 1; i >= first; --i) {
if (getSize(i) != (IndexT) 1) {
if (getStride(i) == prevSize) {
prevSize *= getSize(i);
} else {
return false;
}
}
}
return true;
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
__host__ __device__ THCDeviceTensor<T, Dim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::transpose(int dim1,
int dim2) const {
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_HCC__)
// Device code
assert(dim1 >= 0 && dim1 < Dim);
assert(dim1 >= 0 && dim2 < Dim);
#else
// Host code
if (dim1 < 0 || dim1 >= Dim) {
THError("dim1 out of bounds");
}
if (dim2 < 0 || dim2 >= Dim) {
THError("dim2 out of bounds");
}
#endif
IndexT newSize[Dim];
IndexT newStride[Dim];
for (int i = 0; i < Dim; ++i) {
newSize[i] = size_[i];
newStride[i] = stride_[i];
}
IndexT tmp = newSize[dim1];
newSize[dim1] = newSize[dim2];
newSize[dim2] = tmp;
tmp = newStride[dim1];
newStride[dim1] = newStride[dim2];
newStride[dim2] = tmp;
return THCDeviceTensor<T, Dim, IndexT, PtrTraits>(data_, newSize, newStride);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <int NewDim>
__host__ __device__ THCDeviceTensor<T, NewDim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::upcastOuter() {
// Can only create tensors of greater dimension
thc_static_assert(NewDim > Dim);
IndexT newSize[NewDim];
IndexT newStride[NewDim];
int shift = NewDim - Dim;
for (int i = 0; i < NewDim; ++i) {
if (i < shift) {
// These are the extended dimensions
newSize[i] = (IndexT) 1;
newStride[i] = size_[0] * stride_[0];
} else {
// Shift the remaining dimensions
newSize[i] = size_[i - shift];
newStride[i] = stride_[i - shift];
}
}
return THCDeviceTensor<T, NewDim, IndexT, PtrTraits>(
data_, newSize, newStride);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <int NewDim>
__host__ __device__ THCDeviceTensor<T, NewDim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::upcastInner() {
// Can only create tensors of greater dimension
thc_static_assert(NewDim > Dim);
IndexT newSize[NewDim];
IndexT newStride[NewDim];
for (int i = 0; i < NewDim; ++i) {
if (i < Dim) {
// Existing dimensions get copied over
newSize[i] = size_[i];
newStride[i] = stride_[i];
} else {
// Extended dimensions
newSize[i] = (IndexT) 1;
newStride[i] = (IndexT) 1;
}
}
return THCDeviceTensor<T, NewDim, IndexT, PtrTraits>(
data_, newSize, newStride);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <int NewDim>
__host__ __device__ THCDeviceTensor<T, NewDim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::downcastOuter() {
// Can only create tensors of lesser dimension
thc_static_assert(NewDim < Dim);
// We can't downcast non-contiguous tensors, since it leaves
// garbage data in the tensor. The tensor needs to be contiguous
// in all of the dimensions we are collapsing (no padding in
// them).
bool cont = isContiguousRange(0, Dim - NewDim);
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_HCC__)
// Device code
assert(cont);
#else
// Host code
if (!cont) {
THError("Can only downcast contiguous tensors");
}
#endif
IndexT newSize[NewDim];
IndexT newStride[NewDim];
int ignoredDims = Dim - NewDim;
IndexT collapsedSize = 1;
for (int i = 0; i < Dim; ++i) {
if (i < ignoredDims) {
// Collapse these dimensions
collapsedSize *= getSize(i);
} else {
// Non-collapsed dimensions
if (i == ignoredDims) {
// This is the first non-collapsed dimension
newSize[i - ignoredDims] = collapsedSize * getSize(i);
} else {
// Subsequent non-collapsed dimensions
newSize[i - ignoredDims] = getSize(i);
}
newStride[i - ignoredDims] = getStride(i);
}
}
return THCDeviceTensor<T, NewDim, IndexT, PtrTraits>(
data_, newSize, newStride);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <int NewDim>
__host__ __device__ THCDeviceTensor<T, NewDim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::downcastInner() {
// Can only create tensors of lesser dimension
thc_static_assert(NewDim < Dim);
// We can't downcast non-contiguous tensors, since it leaves
// garbage data in the tensor. The tensor needs to be contiguous
// in all of the dimensions we are collapsing (no padding in
// them).
bool cont = isContiguousRange(NewDim, Dim);
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_HCC__)
// Device code
assert(cont);
#else
// Host code
if (!cont) {
THError("Can only downcast contiguous tensors");
}
#endif
IndexT newSize[NewDim];
IndexT newStride[NewDim];
IndexT collapsedSize = 1;
for (int i = Dim - 1; i >= 0; --i) {
if (i >= NewDim) {
// Collapse these dimensions
collapsedSize *= getSize(i);
} else {
// Non-collapsed dimensions
if (i == NewDim - 1) {
// This is the first non-collapsed dimension
newSize[i] = collapsedSize * getSize(i);
newStride[i] = getStride(Dim - 1);
} else {
// Subsequent non-collapsed dimensions
newSize[i] = getSize(i);
newStride[i] = getStride(i);
}
}
}
return THCDeviceTensor<T, NewDim, IndexT, PtrTraits>(
data_, newSize, newStride);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <int SubDim>
__host__ __device__ THCDeviceTensor<T, SubDim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::view(DataPtrType at) {
thc_static_assert(SubDim >= 1 && SubDim < Dim);
IndexT viewSizes[SubDim];
IndexT viewStrides[SubDim];
for (int i = 0; i < SubDim; ++i) {
viewSizes[i] = size_[Dim - SubDim + i];
viewStrides[i] = stride_[Dim - SubDim + i];
}
return THCDeviceTensor<T, SubDim, IndexT, PtrTraits>(
at, viewSizes, viewStrides);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
template <int SubDim>
__host__ __device__ THCDeviceTensor<T, SubDim, IndexT, PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::view() {
return view<SubDim>(data_);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
void
THCDeviceTensor<T, Dim, IndexT, PtrTraits>::zero(cudaStream_t stream) {
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_HCC__)
assert(isContiguous());
#else
if (!isContiguous()) {
THError("fillAsync only works on contiguous data");
}
#endif
cudaMemsetAsync(data(), 0, numElements() * sizeof(T), stream);
}