forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
THCTensor.cpp
376 lines (314 loc) · 10.9 KB
/
THCTensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#include <THC/THCGeneral.h>
#include <THC/THCTensor.hpp>
#include <THC/THCTensorCopy.h>
#include <new>
#include <THC/generic/THCTensor.cpp>
#include <THC/THCGenerateAllTypes.h>
#include <THC/generic/THCTensor.cpp>
#include <THC/THCGenerateComplexTypes.h>
#include <THC/generic/THCTensor.cpp>
#include <THC/THCGenerateBoolType.h>
#include <THC/generic/THCTensor.cpp>
#include <THC/THCGenerateBFloat16Type.h>
#include <THC/THCTensorInfo.cuh>
#include <ATen/native/cuda/Resize.cuh>
int THCTensor_nDimension(THCState *state, const THCTensor *self) {
return THTensor_nDimension(self);
}
int THCTensor_nDimensionLegacyNoScalars(THCState *state, const THCTensor *self) {
return THTensor_nDimensionLegacyNoScalars(self);
}
int THCTensor_nDimensionLegacyAll(THCState *state, const THCTensor *self) {
return THTensor_nDimensionLegacyAll(self);
}
int64_t THCTensor_size(THCState *state, const THCTensor *self, int dim) {
THArgCheck((dim >= 0) && (dim < self->dim()), 2, "out of range");
return self->size(dim);
}
int64_t THCTensor_sizeLegacyNoScalars(THCState *state, const THCTensor *self, int dim) {
return THTensor_sizeLegacyNoScalars(self, dim);
}
int64_t THCTensor_stride(THCState *state, const THCTensor *self, int dim) {
THArgCheck((dim >= 0) && (dim < self->dim()), 2, "out of range");
return self->stride(dim);
}
int64_t THCTensor_strideLegacyNoScalars(THCState *state, const THCTensor *self, int dim) {
return THTensor_strideLegacyNoScalars(self, dim);
}
THCTensor *THCTensor_new(THCState *state, caffe2::TypeMeta type_meta) {
auto scalar_type = at::typeMetaToScalarType(type_meta);
switch (scalar_type) {
case at::ScalarType::Byte:
return THCudaByteTensor_new(state);
case at::ScalarType::Char:
return THCudaCharTensor_new(state);
case at::ScalarType::Short:
return THCudaShortTensor_new(state);
case at::ScalarType::Int:
return THCudaIntTensor_new(state);
case at::ScalarType::Long:
return THCudaLongTensor_new(state);
case at::ScalarType::Half:
return THCudaHalfTensor_new(state);
case at::ScalarType::Float:
return THCudaTensor_new(state);
case at::ScalarType::Double:
return THCudaDoubleTensor_new(state);
case at::ScalarType::Bool:
return THCudaBoolTensor_new(state);
case at::ScalarType::BFloat16:
return THCudaBFloat16Tensor_new(state);
case at::ScalarType::ComplexFloat:
return THCudaComplexFloatTensor_new(state);
case at::ScalarType::ComplexDouble:
return THCudaComplexDoubleTensor_new(state);
default:
AT_ERROR("unexpected ScalarType: ", toString(scalar_type));
}
}
void THCTensor_resize(THCState *state, THCTensor *self, at::IntArrayRef size, at::IntArrayRef stride) {
if(stride.data()) {
THArgCheck(stride.size() == size.size(), 3, "invalid stride");
}
#ifdef DEBUG
THAssert(size.size() <= INT_MAX);
#endif
THCTensor_resizeNd(state, self, size.size(), size.data(), stride.data());
}
void THCTensor_resizeAs(THCState *state, THCTensor *self, THCTensor *src) {
int isSame = 0;
int d;
if(self->dim() == src->dim())
{
isSame = 1;
for(d = 0; d < self->dim(); d++)
{
if(self->size(d) != src->size(d))
{
isSame = 0;
break;
}
}
}
if(!isSame)
THCTensor_resizeNd(state, self, src->dim(), THTensor_getSizePtr(src), NULL);
}
void THCTensor_resizeNd(THCState *state, THCTensor *self, int nDimension, const int64_t *size, const int64_t *stride)
{
TORCH_CHECK(nDimension >= 0, "resizeNd nDimension must be non-negative");
at::IntArrayRef sizes(size, nDimension);
at::optional<at::IntArrayRef> strides;
if (stride) {
strides = at::IntArrayRef(stride, nDimension);
}
at::native::resize_impl_cuda_(self, sizes, strides, /*device_guard=*/false);
}
void THCTensor_set(THCState *state, THCTensor *self, THCTensor *src)
{
if(self != src)
THCTensor_setStorage(state,
self,
THTensor_getStoragePtr(src),
src->storage_offset(),
src->sizes(),
src->strides());
}
void THCTensor_setStorage(THCState *state, THCTensor *self, THCStorage *storage_, ptrdiff_t storageOffset_, at::IntArrayRef size_, at::IntArrayRef stride_)
{
c10::raw::intrusive_ptr::incref(storage_);
THTensor_wrap(self).set_(at::Storage(c10::intrusive_ptr<at::StorageImpl>::reclaim(storage_)),
storageOffset_, size_, stride_);
}
void THCTensor_squeeze1d(THCState *state, THCTensor *self, THCTensor *src, int dimension)
{
int d;
if(!src)
src = self;
THArgCheck(dimension < src->dim(), 3, "dimension out of range");
THCTensor_set(state, self, src);
if(src->size(dimension) == 1)
{
at::DimVector newSize(static_cast<size_t>(self->dim() - 1));
at::DimVector newStride(static_cast<size_t>(self->dim() - 1));
for (d = 0; d < dimension; d++)
{
newSize[d] = self->size(d);
newStride[d] = self->stride(d);
}
for(d = dimension; d < self->dim()-1; d++)
{
newSize[d] = self->size(d+1);
newStride[d] = self->stride(d+1);
}
self->set_sizes_and_strides(newSize, newStride);
}
}
void THCTensor_unsqueeze1d(THCState *state, THCTensor *self, THCTensor *src, int dimension)
{
int d;
if(!src)
src = self;
THArgCheck((dimension >= 0) && (dimension <= src->dim()), 3, "dimension out of range");
THCTensor_set(state, self, src);
at::DimVector newSize(static_cast<size_t>(/* size */ self->dim()+1));
at::DimVector newStride(static_cast<size_t>(/* size */ self->dim()+1));
for(d = self->dim(); d > dimension; d--)
{
newSize[d] = self->size(d-1);
newStride[d] = self->stride(d-1);
}
if (dimension < self->dim())
{
newStride[dimension] = self->size(dimension) * self->stride(dimension);
}
else
{
newStride[dimension] = 1;
}
newSize[dimension] = 1;
for(d = dimension - 1; d >= 0; d--)
{
newSize[d] = self->size(d);
newStride[d] = self->stride(d);
}
self->set_sizes_and_strides(newSize, newStride);
}
bool THCTensor_allContiguous(THCState *state, THCTensor **inputs, int numInputs) {
THAssert(numInputs > 0);
for (int i = 0; i < numInputs; ++i) {
if (!inputs[i]->is_contiguous()) {
return false;
}
}
return true;
}
ptrdiff_t THCTensor_nElement(THCState *state, const THCTensor *self) {
if(THTensor_nDimensionLegacyAll(self) == 0) {
return 0;
} else {
return self->numel();
}
}
// NB: It is INVALID to call this on an UndefinedTensor
void THCTensor_retain(THCState *state, THCTensor *self) {
c10::raw::intrusive_ptr::incref(self);
}
void THCTensor_free(THCState *state, THCTensor *self) {
THTensor_free(self);
}
int THCTensor_getDevice(THCState* state, const THCTensor* tensor) {
if (!THTensor_getStoragePtr(tensor)) return -1;
return THCStorage_getDevice(state, THTensor_getStoragePtr(tensor));
}
bool THCTensor_allSameDevice(THCState* state, THCTensor ** inputs, int numInputs) {
THAssert(numInputs > 0);
int device = THCTensor_getDevice(state, inputs[0]);
for (int i = 1; i < numInputs; ++i) {
if (THCTensor_getDevice(state, inputs[i]) != device) {
return false;
}
}
return true;
}
bool THCTensor_canUse32BitIndexMath(THCState* state, const THCTensor* t, ptrdiff_t max_elem) {
ptrdiff_t elements = THCTensor_nElement(state, t);
if (elements >= max_elem) {
return false;
}
if (t->dim() == 0) {
return true;
}
ptrdiff_t offset = 0;
ptrdiff_t linearId = elements - 1;
for (int i = THCTensor_nDimensionLegacyAll(state, t) - 1; i >= 0; --i) {
ptrdiff_t curDimIndex =
linearId % THCTensor_size(state, t, i);
ptrdiff_t curDimOffset = curDimIndex *
THCTensor_stride(state, t, i);
offset += curDimOffset;
linearId /= THCTensor_size(state, t, i);
}
if (offset >= max_elem) {
return false;
}
return true;
}
bool THCTensor_all32BitIndexable(THCState* state, THCTensor** inputs, int numInputs) {
for (int i = 0; i < numInputs; ++i) {
if (!THCTensor_canUse32BitIndexMath(state, inputs[i])) {
return false;
}
}
return true;
}
/* Due to the resize semantics of ops with `out=` keywords, if */ \
/* the output `tensor` has the same shape as the output of the */ \
/* reduction operation, then any noncontiguities in the output */ \
/* `tensor` should be preserved. This needs to be special cased b/c */ \
/* otherwise, when keepdim=False, the implementations of reduction */ \
/* ops resize `tensor` to the reduced size with keepdim=True, and */ \
/* then later squeeze `tensor` to the correct output size, breaking */ \
/* the contiguity guarantees of the resize semantics. */ \
void THCTensor_preserveReduceDimSemantics(THCState *state, THCTensor *tensor,
int in_dims, int64_t dimension, int keepdim) {
int out_dims = THCTensor_nDimensionLegacyAll(state, tensor);
if (out_dims > 0 && !keepdim && out_dims == in_dims - 1) {
THCTensor_unsqueeze1d(state, tensor, tensor, dimension);
}
}
namespace {
struct SizeAndStride {
int64_t size;
int64_t stride;
};
/*
A comparator that will sort SizeAndStride structs by stride,
in ascending order.
*/
int compareSizeAndStride(const void* a, const void* b) {
const SizeAndStride* aS = (const SizeAndStride*) a;
const SizeAndStride* bS = (const SizeAndStride*) b;
if (aS->stride < bS->stride) return -1;
if (aS->stride == bS->stride) return 0;
return 1;
}
}
/* Returns false if there is no possibility that the tensor */
/* has "overlapping" indices and true otherwise. */
/* "Overlapping" indices are two+ valid indices that specify */
/* the same offset within the tensor. */
/* The function does this by checking for a sufficient but not */
/* necessary condition of no overlap. In particular, that */
/* that there exists an ordering of the tensor's dimensions */
/* that is nicely "nested," with each dimension contained */
/* within the next one. */
bool THCTensor_maybeOverlappingIndices(THCState* state, const THCTensor* t) {
/* Extract size/stride arrays; only consider size >1 dims. */
SizeAndStride info[MAX_CUTORCH_DIMS];
int dims = THCTensor_nDimensionLegacyAll(state, t);
int nonSize1Dims = 0;
for (int i = 0; i < dims; ++i) {
int64_t size = THCTensor_sizeLegacyNoScalars(state, t, i);
if (size > 1) {
info[nonSize1Dims].size = size;
info[nonSize1Dims].stride =
THCTensor_stride(state, t, i);
if (info[nonSize1Dims].stride < 1) {
return true;
}
++nonSize1Dims;
}
}
/* Short-circuits if tensor is a single element. */
if (nonSize1Dims == 0) {
return false;
}
/* Ascending order (innermost dimension in sorted view is at [0]) */
qsort(info, nonSize1Dims, sizeof(SizeAndStride), compareSizeAndStride);
for (int i = 0; i < (nonSize1Dims - 1); ++i) {
if (((info[i].size - 1) * info[i].stride) >= info[i + 1].stride) {
return true;
}
}
return false;
}