forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
_classes.py
49 lines (39 loc) · 1.65 KB
/
_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import types
import torch._C
class _ClassNamespace(types.ModuleType):
def __init__(self, name):
super(_ClassNamespace, self).__init__('torch.classes' + name)
self.name = name
def __getattr__(self, attr):
proxy = torch._C._get_custom_class_python_wrapper(self.name, attr)
if proxy is None:
raise RuntimeError(f'Class {self.name}.{attr} not registered!')
return proxy
class _Classes(types.ModuleType):
def __init__(self):
super(_Classes, self).__init__('torch.classes')
def __getattr__(self, name):
namespace = _ClassNamespace(name)
setattr(self, name, namespace)
return namespace
@property
def loaded_libraries(self):
return torch.ops.loaded_libraries
def load_library(self, path):
"""
Loads a shared library from the given path into the current process.
The library being loaded may run global initialization code to register
custom classes with the PyTorch JIT runtime. This allows dynamically
loading custom classes. For this, you should compile your class
and the static registration code into a shared library object, and then
call ``torch.classes.load_library('path/to/libcustom.so')`` to load the
shared object.
After the library is loaded, it is added to the
``torch.classes.loaded_libraries`` attribute, a set that may be inspected
for the paths of all libraries loaded using this function.
Args:
path (str): A path to a shared library to load.
"""
torch.ops.load_library(path)
# The classes "namespace"
classes = _Classes()