forked from jmoggridge/bioinfo-notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BA2_C - find profile-most prob kmer in seq.py
85 lines (62 loc) · 2.71 KB
/
BA2_C - find profile-most prob kmer in seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 20 16:13:30 2019
@author: jasonmoggridge
BA2_C
Find a Profile-most Probable k-mer in a String :
Given a profile matrix P,
we can evaluate the probability of every k-mer in a string S
and find a Profile-most probable k-mer in S,
i.e., a k-mer that was most likely to have been generated
by P among all k-mers in S.
For example, ACGGGGATTACC is the Profile-most probable
12-mer in GGTACGGGGATTACCT. Indeed, every other 12-mer
in this string has probability 0.
In general, if there are multiple Profile-most probable k-mers in Text,
then we select the first such k-mer occurring in Text.
Profile-most Probable k-mer Problem
Find a Profile-most probable k-mer in a string.
Given: A string Text, an integer k, and a 4 × k matrix Profile.
Return: A Profile-most probable k-mer in Text. (If multiple answers exist, you may return any one.)
Sample Dataset
ACCTGTTTATTGCCTAAGTTCCGAACAAACCCAATATAGCCCGAGGGCCT
5
0.2 0.2 0.3 0.2 0.3
0.4 0.3 0.1 0.5 0.1
0.3 0.3 0.5 0.2 0.4
0.1 0.2 0.1 0.1 0.2
Sample Output
CCGAG
"""
def profile_most_pro_kmer(S,k,P):
"""looks at all k-mers in text and returns their p(seq|model P)
p = 1* (each probability in path across matrix for k positions
"""
alpha = 'ACGT' # need alpha to index base to matrix row: P[alpha.index(base)]
kmer_prob ={} # dict to keep track of best results
for i in range(len(S)-k+1): # i indexes the kmer
kmer = S[i:i+k] #
if kmer not in kmer_prob: # add kmer to dict, set to p=zero
kmer_prob[S[i:i+k]] = 0
score = 1 # need to start score with p=1
for j in range(0,k):
#j iterates over kmer
base = alpha.index(kmer[j]) # index bases
score = score * P[base][j] # multiplies by P matrix(base, pos) for each base,pos
if score > kmer_prob[kmer]: # update if better score
kmer_prob[kmer] = score
print(kmer, score)
p_max_kmers = [] # get best prob kmer in dict
for kmer in kmer_prob.keys():
if kmer_prob[kmer] == max(kmer_prob.values()):
p_max_kmers.append(kmer)
return p_max_kmers
##
f = open('//Users/jasonmoggridge/Desktop/rosalind_ba2c.txt', 'r')
S = str(f.readline().strip())
k = int(f.readline().strip())
P = [[float(i) for i in l.strip('\n').split(' ')] for l in f.readlines()]
pmax = profile_most_pro_kmer(S,k,P)
for p in pmax:
print('\n\n',p)