Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Distributed sparse training device problem #438

Open
tobymuller233 opened this issue Nov 21, 2024 · 0 comments
Open

Distributed sparse training device problem #438

tobymuller233 opened this issue Nov 21, 2024 · 0 comments

Comments

@tobymuller233
Copy link

I'm recently working on model pruning in yolov5 framework, and I modified the train.py to use sparse training with torch-pruning.
When I tried to run the distributed training on 2 GPUs, some errors occur:
Screenshot 2024-11-21 at 16 48 33
It seems that when I do dependency tracing in pruner initialization, tensors are not in the same device and that causes the problem. How can i avoid this problem when using distributed training?
Here shows my train.py after modification. The added code pieces are highlighted by "#".

# Ultralytics YOLOv3 🚀, AGPL-3.0 license
"""
Train a YOLOv3 model on a custom dataset. Models and datasets download automatically from the latest YOLOv3 release.

Usage - Single-GPU training:
    $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)
    $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch

Usage - Multi-GPU DDP training:
    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3

Models:     https://github.com/ultralytics/yolov5/tree/master/models
Datasets:   https://github.com/ultralytics/yolov5/tree/master/data
Tutorial:   https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
"""

import argparse
import math
import os
import random
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import torch_pruning as tp
from models.common import Bottleneck3

try:
    import comet_ml  # must be imported before torch (if installed)
except ImportError:
    comet_ml = None

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.optim import lr_scheduler
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv3 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import val as validate  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download, is_url
from utils.general import (
    LOGGER,
    TQDM_BAR_FORMAT,
    check_amp,
    check_dataset,
    check_file,
    check_git_info,
    check_git_status,
    check_img_size,
    check_requirements,
    check_suffix,
    check_yaml,
    colorstr,
    get_latest_run,
    increment_path,
    init_seeds,
    intersect_dicts,
    labels_to_class_weights,
    labels_to_image_weights,
    methods,
    one_cycle,
    print_args,
    print_mutation,
    strip_optimizer,
    yaml_save,
)
from utils.loggers import Loggers
from utils.loggers.comet.comet_utils import check_comet_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve
from utils.torch_utils import (
    EarlyStopping,
    ModelEMA,
    de_parallel,
    select_device,
    smart_DDP,
    smart_optimizer,
    smart_resume,
    torch_distributed_zero_first,
)

LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
GIT_INFO = check_git_info()


def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
    """
    Train a YOLOv3 model on a custom dataset and manage the training process.

    Args:
        hyp (str | dict): Path to hyperparameters yaml file or hyperparameters dictionary.
        opt (argparse.Namespace): Parsed command line arguments containing training options.
        device (torch.device): Device to load and train the model on.
        callbacks (Callbacks): Callbacks to handle various stages of the training lifecycle.

    Returns:
        None

    Usage - Single-GPU training:
        $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)
        $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch

    Usage - Multi-GPU DDP training:
        $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights
            yolov5s.pt --img 640 --device 0,1,2,3

    Models: https://github.com/ultralytics/yolov5/tree/master/models
    Datasets: https://github.com/ultralytics/yolov5/tree/master/data
    Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data

    Examples:
        ```python
        from ultralytics import train
        import argparse
        import torch
        from utils.callbacks import Callbacks

        # Example usage
        args = argparse.Namespace(
            data='coco128.yaml',
            weights='yolov5s.pt',
            cfg='yolov5s.yaml',
            img_size=640,
            epochs=50,
            batch_size=16,
            device='0'
        )

        device = torch.device(f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu')
        callbacks = Callbacks()

        train(hyp='hyp.scratch.yaml', opt=args, device=device, callbacks=callbacks)
        ```
    """
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = (
        Path(opt.save_dir),
        opt.epochs,
        opt.batch_size,
        opt.weights,
        opt.single_cls,
        opt.evolve,
        opt.data,
        opt.cfg,
        opt.resume,
        opt.noval,
        opt.nosave,
        opt.workers,
        opt.freeze,
    )
    callbacks.run("on_pretrain_routine_start")

    # Directories
    w = save_dir / "weights"  # weights dir
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / "last.pt", w / "best.pt"

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors="ignore") as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
    opt.hyp = hyp.copy()  # for saving hyps to checkpoints

    # Save run settings
    if not evolve:
        yaml_save(save_dir / "hyp.yaml", hyp)
        yaml_save(save_dir / "opt.yaml", vars(opt))

    # Loggers
    data_dict = None
    if RANK in {-1, 0}:
        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

        # Process custom dataset artifact link
        data_dict = loggers.remote_dataset
        if resume:  # If resuming runs from remote artifact
            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

    # Config
    plots = not evolve and not opt.noplots  # create plots
    cuda = device.type != "cpu"
    init_seeds(opt.seed + 1 + RANK, deterministic=True)
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict["train"], data_dict["val"]
    nc = 1 if single_cls else int(data_dict["nc"])  # number of classes
    names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"]  # class names
    is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt")  # COCO dataset

    # Model
    check_suffix(weights, ".pt")  # check weights
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(LOCAL_RANK):
            weights = attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location="cpu")  # load checkpoint to CPU to avoid CUDA memory leak
        model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)  # create
        exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else []  # exclude keys
        csd = ckpt["model"].float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}")  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)  # create
    amp = check_amp(model)  # check AMP

    # Freeze
    freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
        if any(x in k for x in freeze):
            LOGGER.info(f"freezing {k}")
            v.requires_grad = False

    # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz, amp)
        loggers.on_params_update({"batch_size": batch_size})

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp["weight_decay"] *= batch_size * accumulate / nbs  # scale weight_decay
    optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])

    # Scheduler
    if opt.cos_lr:
        lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']
    else:

        def lf(x):
            """Linear learning rate scheduler function with decay calculated by epoch proportion."""
            return (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"]  # linear

    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume
    best_fitness, start_epoch = 0.0, 0
    if pretrained:
        if resume:
            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
        del ckpt, csd

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning(
            "WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
            "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info("Using SyncBatchNorm()")

    # Trainloader
    train_loader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size // WORLD_SIZE,
        gs,
        single_cls,
        hyp=hyp,
        augment=True,
        cache=None if opt.cache == "val" else opt.cache,
        rect=opt.rect,
        rank=LOCAL_RANK,
        workers=workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
        prefix=colorstr("train: "),
        shuffle=True,
        seed=opt.seed,
    )
    labels = np.concatenate(dataset.labels, 0)
    mlc = int(labels[:, 0].max())  # max label class
    assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"

    # Process 0
    if RANK in {-1, 0}:
        val_loader = create_dataloader(
            val_path,
            imgsz,
            batch_size // WORLD_SIZE * 2,
            gs,
            single_cls,
            hyp=hyp,
            cache=None if noval else opt.cache,
            rect=True,
            rank=-1,
            workers=workers * 2,
            pad=0.5,
            prefix=colorstr("val: "),
        )[0]

        if not resume:
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)  # run AutoAnchor
            model.half().float()  # pre-reduce anchor precision

        callbacks.run("on_pretrain_routine_end", labels, names)

    # DDP mode
    if cuda and RANK != -1:
        model = smart_DDP(model)

    # Model attributes
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp["box"] *= 3 / nl  # scale to layers
    hyp["cls"] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    hyp["label_smoothing"] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nb = len(train_loader)  # number of batches
    nw = max(round(hyp["warmup_epochs"] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = torch.cuda.amp.GradScaler(enabled=amp)
    stopper, stop = EarlyStopping(patience=opt.patience), False
    compute_loss = ComputeLoss(model)  # init loss class
    callbacks.run("on_train_start")
    LOGGER.info(
        f'Image sizes {imgsz} train, {imgsz} val\n'
        f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
        f"Logging results to {colorstr('bold', save_dir)}\n"
        f'Starting training for {epochs} epochs...'
    )
##################################################################
    if opt.sparse:
        imp = tp.importance.GroupNormImportance(p=2)
        example_inputs = torch.randn(opt.batch_size, 3, opt.imgsz, opt.imgsz).to(device)  # dummy input
        if torch.cuda.device_count() > 1:
            ignored_layers = [model.module.model[27], model.module.model[33], model.module.model[39], model.module.model[40]]
            for m in model.module.modules():
                if isinstance(m, Bottleneck3):
                    ignored_layers.append(m)
        else:
            ignored_layers = [model.model[27], model.model[33], model.model[39], model.model[40]]
            for m in model.modules():
                if isinstance(m, Bottleneck3):
                    ignored_layers.append(m)
        iterative_steps = 1
        pruner = tp.pruner.GroupNormPruner(
            model,
            example_inputs,
            imp,
            ignored_layers=ignored_layers,
            iterative_steps=iterative_steps,
            ch_sparsity=0.2,
            isomorphic=True,
            global_pruning=True
        )
   ###############################################################
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run("on_train_epoch_start")
        model.train()

        # update regularizer############
        if opt.sparse:
            pruner.update_regularizer()
        ############

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size"))
        if RANK in {-1, 0}:
            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            callbacks.run("on_train_batch_start")
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
                    if "momentum" in x:
                        x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)

            # Forward
            with torch.cuda.amp.autocast(amp):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.0

            # Backward
            scaler.scale(loss).backward()

            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
            if ni - last_opt_step >= accumulate:
                scaler.unscale_(optimizer)  # unscale gradients
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
                
                ###########
                if opt.sparse:
                    pruner.regularize(model)
                ###########
                
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"  # (GB)
                pbar.set_description(
                    ("%11s" * 2 + "%11.4g" * 5)
                    % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
                )
                callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss))
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run("on_train_epoch_end", epoch=epoch)
            ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = validate.run(
                    data_dict,
                    batch_size=batch_size // WORLD_SIZE * 2,
                    imgsz=imgsz,
                    half=amp,
                    model=ema.ema,
                    single_cls=single_cls,
                    dataloader=val_loader,
                    save_dir=save_dir,
                    plots=False,
                    callbacks=callbacks,
                    compute_loss=compute_loss,
                )

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    "epoch": epoch,
                    "best_fitness": best_fitness,
                    "model": deepcopy(de_parallel(model)).half(),
                    "ema": deepcopy(ema.ema).half(),
                    "updates": ema.updates,
                    "optimizer": optimizer.state_dict(),
                    "opt": vars(opt),
                    "git": GIT_INFO,  # {remote, branch, commit} if a git repo
                    "date": datetime.now().isoformat(),
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f"epoch{epoch}.pt")
                del ckpt
                callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi)

        # EarlyStopping
        if RANK != -1:  # if DDP training
            broadcast_list = [stop if RANK == 0 else None]
            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
            if RANK != 0:
                stop = broadcast_list[0]
        if stop:
            break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in {-1, 0}:
        LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f"\nValidating {f}...")
                    results, _, _ = validate.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=plots,
                        callbacks=callbacks,
                        compute_loss=compute_loss,
                    )  # val best model with plots
                    if is_coco:
                        callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi)

        callbacks.run("on_train_end", last, best, epoch, results)

    torch.cuda.empty_cache()
    return results


def parse_opt(known=False):
    """
    Parse command line arguments for configuring the training of a YOLO model.

    Args:
        known (bool): Flag to parse known arguments only, defaults to False.

    Returns:
        (argparse.Namespace): Parsed command line arguments.

    Examples:
        ```python
        options = parse_opt()
        print(options.weights)
        ```

    Notes:
        * The default weights path is 'yolov3-tiny.pt'.
        * Set `known` to True for parsing only the known arguments, useful for partial arguments.

    References:
        * Models: https://github.com/ultralytics/yolov5/tree/master/models
        * Datasets: https://github.com/ultralytics/yolov5/tree/master/data
        * Training Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
    """
    parser = argparse.ArgumentParser()
    parser.add_argument("--weights", type=str, default=ROOT / "yolov3-tiny.pt", help="initial weights path")
    parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
    parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
    parser.add_argument("--epochs", type=int, default=100, help="total training epochs")
    parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
    parser.add_argument("--rect", action="store_true", help="rectangular training")
    parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
    parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
    parser.add_argument("--noval", action="store_true", help="only validate final epoch")
    parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
    parser.add_argument("--noplots", action="store_true", help="save no plot files")
    parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
    parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
    parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
    parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
    parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
    parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
    parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
    parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
    parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
    parser.add_argument("--name", default="exp", help="save to project/name")
    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
    parser.add_argument("--quad", action="store_true", help="quad dataloader")
    parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
    parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
    parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
    parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
    parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
    parser.add_argument("--seed", type=int, default=0, help="Global training seed")
    parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
    parser.add_argument("--sparse", action="store_true", help="Sparse weights for training")

    # Logger arguments
    parser.add_argument("--entity", default=None, help="Entity")
    parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option')
    parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval")
    parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use")

    return parser.parse_known_args()[0] if known else parser.parse_args()


def main(opt, callbacks=Callbacks()):
    """
    Main training/evolution script handling model checks, DDP setup, training, and hyperparameter evolution.

    Args:
        opt (argparse.Namespace): Parsed command-line options.
        callbacks (Callbacks, optional): Callback object for handling training events. Defaults to Callbacks().

    Returns:
        None

    Raises:
        AssertionError: If certain constraints are violated (e.g., when specific options are incompatible with DDP training).

    Notes:
       - For a tutorial on using Multi-GPU with DDP: https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training

    Example:
        Single-GPU training:
        ```python
        $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)
        $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch
        ```

        Multi-GPU DDP training:
        ```python
        $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml \
        --weights yolov5s.pt --img 640 --device 0,1,2,3
        ```

        Models: https://github.com/ultralytics/yolov5/tree/master/models
        Datasets: https://github.com/ultralytics/yolov5/tree/master/data
        Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
    """
    if RANK in {-1, 0}:
        print_args(vars(opt))
        check_git_status()
        check_requirements(ROOT / "requirements.txt")

    # Resume (from specified or most recent last.pt)
    if opt.resume and not check_comet_resume(opt) and not opt.evolve:
        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
        opt_yaml = last.parent.parent / "opt.yaml"  # train options yaml
        opt_data = opt.data  # original dataset
        if opt_yaml.is_file():
            with open(opt_yaml, errors="ignore") as f:
                d = yaml.safe_load(f)
        else:
            d = torch.load(last, map_location="cpu")["opt"]
        opt = argparse.Namespace(**d)  # replace
        opt.cfg, opt.weights, opt.resume = "", str(last), True  # reinstate
        if is_url(opt_data):
            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
    else:
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
            check_file(opt.data),
            check_yaml(opt.cfg),
            check_yaml(opt.hyp),
            str(opt.weights),
            str(opt.project),
        )  # checks
        assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
        if opt.evolve:
            if opt.project == str(ROOT / "runs/train"):  # if default project name, rename to runs/evolve
                opt.project = str(ROOT / "runs/evolve")
            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
        if opt.name == "cfg":
            opt.name = Path(opt.cfg).stem  # use model.yaml as name
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        msg = "is not compatible with YOLOv3 Multi-GPU DDP training"
        assert not opt.image_weights, f"--image-weights {msg}"
        assert not opt.evolve, f"--evolve {msg}"
        assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
        assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
        assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device("cuda", LOCAL_RANK)
        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            "lr0": (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            "lrf": (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            "momentum": (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            "weight_decay": (1, 0.0, 0.001),  # optimizer weight decay
            "warmup_epochs": (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            "warmup_momentum": (1, 0.0, 0.95),  # warmup initial momentum
            "warmup_bias_lr": (1, 0.0, 0.2),  # warmup initial bias lr
            "box": (1, 0.02, 0.2),  # box loss gain
            "cls": (1, 0.2, 4.0),  # cls loss gain
            "cls_pw": (1, 0.5, 2.0),  # cls BCELoss positive_weight
            "obj": (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            "obj_pw": (1, 0.5, 2.0),  # obj BCELoss positive_weight
            "iou_t": (0, 0.1, 0.7),  # IoU training threshold
            "anchor_t": (1, 2.0, 8.0),  # anchor-multiple threshold
            "anchors": (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            "fl_gamma": (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            "hsv_h": (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            "hsv_s": (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
            "hsv_v": (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            "degrees": (1, 0.0, 45.0),  # image rotation (+/- deg)
            "translate": (1, 0.0, 0.9),  # image translation (+/- fraction)
            "scale": (1, 0.0, 0.9),  # image scale (+/- gain)
            "shear": (1, 0.0, 10.0),  # image shear (+/- deg)
            "perspective": (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            "flipud": (1, 0.0, 1.0),  # image flip up-down (probability)
            "fliplr": (0, 0.0, 1.0),  # image flip left-right (probability)
            "mosaic": (1, 0.0, 1.0),  # image mixup (probability)
            "mixup": (1, 0.0, 1.0),  # image mixup (probability)
            "copy_paste": (1, 0.0, 1.0),
        }  # segment copy-paste (probability)

        with open(opt.hyp, errors="ignore") as f:
            hyp = yaml.safe_load(f)  # load hyps dict
            if "anchors" not in hyp:  # anchors commented in hyp.yaml
                hyp["anchors"] = 3
        if opt.noautoanchor:
            del hyp["anchors"], meta["anchors"]
        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
        if opt.bucket:
            # download evolve.csv if exists
            subprocess.run(
                [
                    "gsutil",
                    "cp",
                    f"gs://{opt.bucket}/evolve.csv",
                    str(evolve_csv),
                ]
            )

        for _ in range(opt.evolve):  # generations to evolve
            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
                # Select parent(s)
                parent = "single"  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1e-6  # weights (sum > 0)
                if parent == "single" or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == "weighted":
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, callbacks)
            callbacks = Callbacks()
            # Write mutation results
            keys = (
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/box_loss",
                "val/obj_loss",
                "val/cls_loss",
            )
            print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)

        # Plot results
        plot_evolve(evolve_csv)
        LOGGER.info(
            f'Hyperparameter evolution finished {opt.evolve} generations\n'
            f"Results saved to {colorstr('bold', save_dir)}\n"
            f'Usage example: $ python train.py --hyp {evolve_yaml}'
        )


def run(**kwargs):
    """
    Run the training process for a YOLOv3 model with the specified configurations.

    Args:
        data (str): Path to the dataset YAML file.
        weights (str): Path to the pre-trained weights file or '' to train from scratch.
        cfg (str): Path to the model configuration file.
        hyp (str): Path to the hyperparameters YAML file.
        epochs (int): Total number of training epochs.
        batch_size (int): Total batch size across all GPUs.
        imgsz (int): Image size for training and validation (in pixels).
        rect (bool): Use rectangular training for better aspect ratio preservation.
        resume (bool | str): Resume most recent training if True, or resume training from a specific checkpoint if a string.
        nosave (bool): Only save the final checkpoint and not the intermediate ones.
        noval (bool): Only validate model performance in the final epoch.
        noautoanchor (bool): Disable automatic anchor generation.
        noplots (bool): Do not save any plots.
        evolve (int): Number of generations for hyperparameters evolution.
        bucket (str): Google Cloud Storage bucket name for saving run artifacts.
        cache (str | None): Cache images for faster training ('ram' or 'disk').
        image_weights (bool): Use weighted image selection for training.
        device (str): Device to use for training, e.g., '0' for first GPU or 'cpu' for CPU.
        multi_scale (bool): Use multi-scale training.
        single_cls (bool): Train a multi-class dataset as a single-class.
        optimizer (str): Optimizer to use ('SGD', 'Adam', or 'AdamW').
        sync_bn (bool): Use synchronized batch normalization (only in DDP mode).
        workers (int): Maximum number of dataloader workers (per rank in DDP mode).
        project (str): Location of the output directory.
        name (str): Unique name for the run.
        exist_ok (bool): Allow existing output directory.
        quad (bool): Use quad dataloader.
        cos_lr (bool): Use cosine learning rate scheduler.
        label_smoothing (float): Label smoothing epsilon.
        patience (int): EarlyStopping patience (epochs without improvement).
        freeze (list[int]): List of layers to freeze, e.g., [0] to freeze only the first layer.
        save_period (int): Save checkpoint every 'save_period' epochs (disabled if less than 1).
        seed (int): Global training seed for reproducibility.
        local_rank (int): For automatic DDP Multi-GPU argument parsing, do not modify.

    Returns:
        None

    Example:
        ```python
        from ultralytics import run
        run(data='coco128.yaml', weights='yolov5m.pt', imgsz=320, epochs=100, batch_size=16)
        ```

    Notes:
        - Ensure the dataset YAML file and initial weights are accessible.
        - Refer to the [Ultralytics YOLOv5 repository](https://github.com/ultralytics/yolov5) for model and data configurations.
        - Use the [Training Tutorial](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) for custom dataset training.
    """
    opt = parse_opt(True)
    for k, v in kwargs.items():
        setattr(opt, k, v)
    main(opt)
    return opt


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)
@tobymuller233 tobymuller233 changed the title Sparse training device problem Distributed sparse training device problem Nov 21, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant