-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.py
52 lines (43 loc) · 1.55 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import cv2
import numpy as np
import face_recognition
import os
path = 'img'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
for cl in myList:
curimg = cv2.imread(f'{path}/{cl}')
images.append(curimg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
def find_encodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
encodeListKnown = find_encodings(images)
print('encoding complete')
cap = cv2.VideoCapture(0)
while True:
success, img = cap.read()
#imgs = cv2.resize(img,(0,0),None,0.25,0.25)
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(img)
encodesCurFrame = face_recognition.face_encodings(img,facesCurFrame)
for encodeFaces,faceLoc in zip(encodesCurFrame,facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown,encodeFaces)
faceDis = face_recognition.face_distance(encodeListKnown,encodeFaces)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
y1,x2,y2,x1 = faceLoc
#y1,x2,y2,x1 = y1*4,x2*4,y2*4,x1*4
cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.rectangle(img,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
cv2.putText(img,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
cv2.imshow('webcam',img)
cv2.waitKey(4)