forked from sandhya212/BISCUIT_SingleCell_IMM_ICML_2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BISCUIT_process_data.R
228 lines (161 loc) · 6.91 KB
/
BISCUIT_process_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
## 21st Dec 2016
## BISCUIT preparing input data
## (example code for Zeisel et al mouse cortex data
## Downloaded from : https://storage.googleapis.com/linnarsson-lab-www-blobs/blobs/cortex/expression_mRNA_17-Aug-2014.txt
##
## Code author SP
## 28th Dec 2016
## choose genes if needed
## 14th March 2017
## pre-processing data
##
## 18th April 2017
## added logic to split genes based on co-variances rather than variance alone
##
##
##############################################################################################################
#### Modify this portion to accommodate your input data. ####
##############################################################################################################
print("Loading Data")
########
if (input_file_name=="expression_mRNA_17-Aug-2014.txt"){
full.data = data.frame(read.csv(input_file_name, header=TRUE, sep="\t", quote="",stringsAsFactors = TRUE)); # genes x cells
dim(full.data)
colnames(full.data); #names(full.data),
rownames(full.data);
gene_names <- full.data[11:nrow(full.data),1];
#creating the cellsXgenes data
num_rows <- length(c(11:nrow(full.data)))
num_cols <- length(c(3:ncol(full.data)))
#full.data.1 <- as.matrix(full.data[11:nrow(full.data),3:ncol(full.data)]);
full.data.1 <- matrix(as.numeric(as.matrix(full.data[11:nrow(full.data),3:ncol(full.data)])),num_rows,num_cols);
dim(full.data.1);
#getting the true labels
if (z_true_labels_avl){
z_true <- as.numeric(factor(unlist(full.data[8,][3:(dim(full.data)[2])])));
}
full.data.1 <- t(full.data.1); #cells x genes
}else{ #this assumes the input data has both column and row names.
#full.data <- data.frame(read.csv(input_file_name, header=TRUE, row.names=1, sep=",",stringsAsFactors = TRUE));
if(input_data_tab_delimited == TRUE){
full.data <- data.frame(read.csv(input_file_name, header=TRUE, row.names=1, sep="\t",stringsAsFactors = TRUE));
}else{ #comma-separated input data
full.data <- data.frame(read.csv(input_file_name, header=TRUE, row.names=1, sep=",",stringsAsFactors = TRUE));
}
if(is_format_genes_cells == TRUE){
full.data <- t(full.data) #cellsxgenes
}
dim(full.data)
gene_names <- colnames(full.data); #gene_names
rownames(full.data); # #cell_names
#creating the cellsXgenes data
full.data.1 <- as.matrix(full.data);
}
dim(full.data.1);
full.data.1[is.na(full.data.1)] <- 0;
#save(full.data.1,file="full.data.1.RData")
#Idea 1 to get meaningful genes: choose genes based on highest global co-expression
stddev.genes <- apply(full.data.1,2,sd);## find std dev of genes
f <- paste0(getwd(),"/",output_folder_name,"/plots/Stddev_genes.pdf")
pdf(file=f);
plot(sort(stddev.genes,decreasing=T),typ='o')
dev.off();
#full.data.2 <- full.data.1[,order(stddev.genes,decreasing=TRUE)];
#gene_names <- gene_names[order(stddev.genes,decreasing=T)];
#Idea 2 to get meaningful genes: perform disparity check between rows and columns
emp.cov <- cov(full.data.1);
diag(emp.cov) <- 0;
rowsums.emp.cov <- rowSums(emp.cov);
colsums.emp.cov <- colSums(emp.cov);
gene.disparity <- rowsums.emp.cov + colsums.emp.cov
f <- paste0(getwd(),"/",output_folder_name,"/plots/Disparity_genes.pdf")
pdf(file=f);
plot(sort(gene.disparity,decreasing=T),typ='o')
dev.off();
#full.data.2 <- full.data.1[,order(gene.disparity,decreasing=TRUE)];
#gene_names <- gene_names[order(gene.disparity,decreasing=T)];
#Idea 3 to get meaningful genes: use Fiedler vector to split genes (graph theoretic partition)
print("Calculating the Fiedler vector of the data")
if (input_file_name=="expression_mRNA_17-Aug-2014.txt"){
load(file="fvec.RData")
}else{
L.mat <- diag(colsums.emp.cov) - emp.cov; #ensure L.mat is singular p.s.d
f.vec <- fiedler.vector(L.mat);
save(f.vec,file="fvec.RData");
}
#load(file="fvec.RData")
full.data.2 <- full.data.1[,order(f.vec,decreasing=TRUE)]
gene_names <- gene_names[order(f.vec,decreasing=TRUE)];
#choose cells
lib_size <- rowSums(full.data.2);
f <- paste0(getwd(),"/",output_folder_name,"/plots/lib_size_hist.pdf")
pdf(file=f);
par(mfrow=c(2,1))
plot(sort(lib_size,decreasing=T),typ='l')
hist(lib_size,breaks=300)
dev.off();
if (input_file_name=="MERGEDtumors_subsetgenes_counts.csv"){
full.data.2 <- full.data.2[which(lib_size>400),]
}
##log transform data
print("Ensuring entire data is numeric and then log transforming it")
X_1 <- log(full.data.2+1);
##
if(exists("choose_cells")){
numcells <- choose_cells;
}else{
numcells <- dim(X_1)[1];
}
print(paste("numcells is", numcells))
if(exists("choose_genes")){
numgenes <- choose_genes;
}else{
numgenes <- dim(X_1)[2];
}
print(paste("numgenes is", numgenes))
###
##write the genes used in this run into a file
##$$$$
f <- paste0(getwd(),"/",output_folder_name,"/plots/Inferred_means/Genes_selected.csv")
write.csv(gene_names[1:numgenes], file=f);
f <- paste0(getwd(),"/",output_folder_name,"/plots/Inferred_Sigmas/Genes_selected.csv")
write.csv(gene_names[1:numgenes], file=f);
#############################################################################################
#############################################################################################
#############################################################################################
tot_numgenes <- dim(full.data.1)[2];
rm(full.data.1)
num_gene_batches <- floor(numgenes/gene_batch);
print(paste0('Number of gene batches is ', num_gene_batches));
numgenes <- num_gene_batches * gene_batch;
num_gene_sub_batches <- sub_batch(num_gene_batches);
print(paste0('Number of gene subbatches is ', num_gene_sub_batches));
#############################################################################################
#############################################################################################
#############################################################################################
# preparing the dataset as per user-defined number of cells and genes
full.data.3 <- full.data.2[1:numcells,1:numgenes];
## Ensure data is numeric
print("Ensuring user-specified data is numeric")
X_all <- matrix(as.numeric(full.data.3),nrow=numcells,ncol=numgenes);
X_all <- log(X_all + 0.1); # log normalisation. + 0.1 to account for zero entries in X that cannot be log transformed.
###
# Visualisation
## centering X and plotting
X_c_all<- center_colmeans(X_all);
N <- numcells;
D <- numgenes;
n <- rep(0,N)
for( i in 1:N){
n[i] <- norm_vec(X_c_all[i,])
}
#X_c_norm_all <- X_c_all/max(n)
print('Computing t-sne projection of the data')
X_tsne_all <- Rtsne(X_all,check_duplicates = FALSE);
## plotting standardised X
#X_std_all <- project.data(X_all,D);
##Global normalised data
log_lib_size <- rowSums(X_all);
X_all_global_norm <- X_all/(log_lib_size + 0.0001);
X_tsne_all_global_norm <- Rtsne(X_all_global_norm,check_duplicates = FALSE);
#rm(X_all)