-
Notifications
You must be signed in to change notification settings - Fork 10
/
FSC_finetune_cross.py
456 lines (379 loc) · 20.6 KB
/
FSC_finetune_cross.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import argparse
import datetime
import json
import numpy as np
import os
import time
import random
from pathlib import Path
import sys
from PIL import Image
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset
import torchvision
import wandb
import timm
from tqdm import tqdm
assert "0.4.5" <= timm.__version__ <= "0.4.9" # version check
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import util.lr_sched as lr_sched
from util.FSC147 import transform_train, transform_val
import models_mae_cross
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=26, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='./data/FSC147/', type=str,
help='dataset path')
parser.add_argument('--anno_file', default='annotation_FSC147_384.json', type=str,
help='annotation json file')
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
help='data split json file')
parser.add_argument('--class_file', default='ImageClasses_FSC147.txt', type=str,
help='class json file')
parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
help='images directory')
parser.add_argument('--output_dir', default='./data/out/fim6_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='./data/out/pre_4_dir/checkpoint-300.pth',
help='resume from checkpoint')
parser.add_argument('--do_resume', action='store_true',
help='Resume training (e.g. if crashed).')
# Training parameters
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--do_aug', action='store_true',
help='Perform data augmentation.')
parser.add_argument('--no_do_aug', action='store_false', dest='do_aug')
parser.set_defaults(do_aug=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Logging parameters
parser.add_argument("--title", default="CounTR_finetuning", type=str)
parser.add_argument("--wandb", default="counting", type=str)
parser.add_argument("--team", default="wsense", type=str)
parser.add_argument("--wandb_id", default=None, type=str)
return parser
os.environ["CUDA_LAUNCH_BLOCKING"] = '1'
class TrainData(Dataset):
def __init__(self, args, split='train', do_aug=True):
with open(args.anno_file) as f:
annotations = json.load(f)
with open(args.data_split_file) as f:
data_split = json.load(f)
self.img = data_split[split]
random.shuffle(self.img)
self.split = split
self.img_dir = im_dir
self.TransformTrain = transform_train(args, do_aug=do_aug)
self.TransformVal = transform_val(args)
self.annotations = annotations
self.im_dir = im_dir
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
im_id = self.img[idx]
anno = self.annotations[im_id]
bboxes = anno['box_examples_coordinates']
dots = np.array(anno['points'])
rects = list()
for bbox in bboxes:
x1 = bbox[0][0]
y1 = bbox[0][1]
x2 = bbox[2][0]
y2 = bbox[2][1]
rects.append([y1, x1, y2, x2])
image = Image.open('{}/{}'.format(self.im_dir, im_id))
if image.mode == "RGBA":
image = image.convert("RGB")
image.load()
m_flag = 0
sample = {'image': image, 'lines_boxes': rects, 'dots': dots, 'id': im_id, 'm_flag': m_flag}
sample = self.TransformTrain(sample) if self.split == "train" else self.TransformVal(sample)
return sample['image'], sample['gt_density'], len(dots), sample['boxes'], sample['pos'], sample['m_flag'], im_id
def main(args):
wandb_run = None
try:
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train = TrainData(args, do_aug=args.do_aug)
dataset_val = TrainData(args, split='val')
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if global_rank == 0:
if args.wandb is not None:
wandb_run = wandb.init(
config=args,
resume="allow",
project=args.wandb,
name=args.title,
entity=args.team,
tags=["CounTR", "finetuning"],
id=args.wandb_id,
)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# define the model
model = models_mae_cross.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
model.to(device)
model_without_ddp = model
# print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
min_MAE = 99999
print_freq = 50
save_freq = 50
misc.load_model_FSC_full(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs - args.start_epoch} epochs - rank {global_rank}")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
# train one epoch
model.train(True)
accum_iter = args.accum_iter
# some parameters in training
train_mae = torch.tensor([0], dtype=torch.float64, device=device)
train_mse = torch.tensor([0], dtype=torch.float64, device=device)
val_mae = torch.tensor([0], dtype=torch.float64, device=device)
val_mse = torch.tensor([0], dtype=torch.float64, device=device)
val_nae = torch.tensor([0], dtype=torch.float64, device=device)
optimizer.zero_grad()
for data_iter_step, (samples, gt_density, _, boxes, pos, m_flag, im_names) in enumerate(
tqdm(data_loader_train, total=len(data_loader_train),
desc=f"Train [e. {epoch} - r. {global_rank}]")):
idx = data_iter_step + (epoch*len(data_loader_train))
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args)
samples = samples.to(device, non_blocking=True, dtype=torch.half)
gt_density = gt_density.to(device, non_blocking=True, dtype=torch.half)
boxes = boxes.to(device, non_blocking=True, dtype=torch.half)
# If there is at least one image in the batch using Type 2 Mosaic, 0-shot is banned.
flag = 0
for i in range(m_flag.shape[0]):
flag += m_flag[i].item()
if flag == 0:
shot_num = random.randint(0, 3)
else:
shot_num = random.randint(1, 3)
with torch.cuda.amp.autocast():
output = model(samples, boxes, shot_num)
# Compute loss function
mask = np.random.binomial(n=1, p=0.8, size=[384, 384])
masks = np.tile(mask, (output.shape[0], 1))
masks = masks.reshape(output.shape[0], 384, 384)
masks = torch.from_numpy(masks).to(device)
loss = (output - gt_density) ** 2
loss = (loss * masks / (384 * 384)).sum() / output.shape[0]
# Update information of MAE and RMSE
with torch.no_grad():
pred_cnt = (output.view(len(samples), -1)).sum(1) / 60
gt_cnt = (gt_density.view(len(samples), -1)).sum(1) / 60
cnt_err = torch.abs(pred_cnt - gt_cnt).float()
batch_mae = cnt_err.double().mean()
batch_mse = (cnt_err ** 2).double().mean()
train_mae += batch_mae
train_mse += batch_mse
if not torch.isfinite(loss):
print("Loss is {}, stopping training".format(loss))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
lr = optimizer.param_groups[0]["lr"]
loss_value_reduce = misc.all_reduce_mean(loss)
if (data_iter_step + 1) % (print_freq * accum_iter) == 0 and (data_iter_step + 1) != len(data_loader_train) and data_iter_step != 0:
if wandb_run is not None:
log = {"train/loss": loss_value_reduce,
"train/lr": lr,
"train/MAE": batch_mae,
"train/RMSE": batch_mse ** 0.5}
wandb.log(log, step=idx)
# evaluation on Validation split
for val_samples, val_gt_density, val_n_ppl, val_boxes, val_pos, _, val_im_names in \
tqdm(data_loader_val, total=len(data_loader_val),
desc=f"Val [e. {epoch} - r. {global_rank}]"):
val_samples = val_samples.to(device, non_blocking=True, dtype=torch.half)
val_gt_density = val_gt_density.to(device, non_blocking=True, dtype=torch.half)
val_boxes = val_boxes.to(device, non_blocking=True, dtype=torch.half)
val_n_ppl = val_n_ppl.to(device, non_blocking=True)
shot_num = random.randint(0, 3)
with torch.no_grad():
with torch.cuda.amp.autocast():
val_output = model(val_samples, val_boxes, shot_num)
val_pred_cnt = (val_output.view(len(val_samples), -1)).sum(1) / 60
val_gt_cnt = (val_gt_density.view(len(val_samples), -1)).sum(1) / 60
val_cnt_err = torch.abs(val_pred_cnt - val_gt_cnt).float()
val_mae += val_cnt_err.double().mean()
val_mse += (val_cnt_err ** 2).double().mean()
_val_nae = val_cnt_err / val_gt_cnt
_val_nae[_val_nae == float('inf')] = 0
val_nae += _val_nae.double().mean()
# Output visualisation information to W&B
if wandb_run is not None:
train_wandb_densities = []
train_wandb_bboxes = []
val_wandb_densities = []
val_wandb_bboxes = []
black = torch.zeros([384, 384], device=device)
for i in range(output.shape[0]):
# gt and predicted density
w_d_map = torch.stack([output[i], black, black])
gt_map = torch.stack([gt_density[i], black, black])
box_map = misc.get_box_map(samples[i], pos[i], device)
w_gt_density = samples[i] / 2 + gt_map + box_map
w_d_map_overlay = samples[i] / 2 + w_d_map
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2)
w_densities = torch.clamp(w_densities, 0, 1)
train_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities),
caption=f"[E#{epoch}] {im_names[i]} ({torch.sum(gt_density[i]).item()}, {torch.sum(output[i]).item()})")]
# exemplars
w_boxes = torch.cat([boxes[i][x, :, :, :] for x in range(boxes[i].shape[0])], 2)
train_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes),
caption=f"[E#{epoch}] {im_names[i]}")]
for i in range(val_output.shape[0]):
# gt and predicted density
w_d_map = torch.stack([val_output[i], black, black])
gt_map = torch.stack([val_gt_density[i], black, black])
box_map = misc.get_box_map(val_samples[i], val_pos[i], device)
w_gt_density = val_samples[i] / 2 + gt_map + box_map
w_d_map_overlay = val_samples[i] / 2 + w_d_map
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2)
w_densities = torch.clamp(w_densities, 0, 1)
val_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities),
caption=f"[E#{epoch}] {val_im_names[i]} ({torch.sum(val_gt_density[i]).item()}, {torch.sum(val_output[i]).item()})")]
# exemplars
w_boxes = torch.cat([val_boxes[i][x, :, :, :] for x in range(val_boxes[i].shape[0])], 2)
val_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes),
caption=f"[E#{epoch}] {val_im_names[i]}")]
log = {"train/loss": loss_value_reduce,
"train/lr": lr,
"train/MAE": batch_mae,
"train/RMSE": batch_mse ** 0.5,
"val/MAE": val_mae / len(data_loader_val),
"val/RMSE": (val_mse / len(data_loader_val)) ** 0.5,
"val/NAE": val_nae / len(data_loader_val),
"train_densitss": train_wandb_densities,
"val_densites": val_wandb_densities,
"train_boxes": train_wandb_bboxes,
"val_boxes": val_wandb_bboxes}
wandb.log(log, step=idx)
# save train status and model
if args.output_dir and (epoch % save_freq == 0 or epoch + 1 == args.epochs) and epoch != 0:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix=f"finetuning_{epoch}",
upload=((epoch + 1) % 100 == 0 or epoch + 1 == args.epochs))
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix="finetuning_last", upload=False)
if args.output_dir and val_mae / len(data_loader_val) < min_MAE:
min_MAE = val_mae / len(data_loader_val)
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix="finetuning_minMAE")
print(f'[Train Epoch #{epoch}] - MAE: {train_mae.item() / len(data_loader_train):5.2f}, RMSE: {(train_mse.item() / len(data_loader_train)) ** 0.5:5.2f}', flush=True)
print(f'[Val Epoch #{epoch}] - MAE: {val_mae.item() / len(data_loader_val):5.2f}, RMSE: {(val_mse.item() / len(data_loader_val)) ** 0.5:5.2f}, NAE: {val_nae.item() / len(data_loader_val):5.2f}', flush=True)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
finally:
if wandb_run is not None:
wandb.run.finish()
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
data_path = Path(args.data_path)
anno_file = data_path / args.anno_file
data_split_file = data_path / args.data_split_file
im_dir = data_path / args.im_dir
if args.do_aug:
class_file = data_path / args.class_file
else:
class_file = None
args.anno_file = anno_file
args.data_split_file = data_split_file
args.im_dir = im_dir
args.class_file = class_file
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)