Skip to content

Latest commit

 

History

History
117 lines (74 loc) · 2.63 KB

README.md

File metadata and controls

117 lines (74 loc) · 2.63 KB

Dataset Overview

This repository contains a dataset from PhysioNet: VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients.

Data Features:

  • Patient demographics
  • Medical history
  • Surgical information: anesthesia and operation time, surgical approach
  • Physiological data.

This repository provides tools for preprocessing and analyzing this data, focusing on handling missing values, encoding categorical variables, and scaling numerical features.

Python


Installation

  • Create environment for the required dependencies
conda create -n pyphysionet python~=3.9.0
conda activate pyphysionet
cd [CLONED_DIRECTORY]
pip install -r requirements.txt
  • Buildup the src path
conda install conda-build
conda develop src
cd src

Pre-processing

  • Identify patients with abnormal_data

from src.clinical_data import abnormal_data

  • Filter patients by abnormal lab results

from src.clinical_data import select_data

  • Filter patients by ASA level

from src.clinical_data import select_asa

  • View patient-specific abnormal data

from src.clinical_data import select_pt

  • Identify patients with pre-op diabetes (DM) or hypertension (HTN)

from src.clinical_data import medical_history

  • Calculate average anes and op time.

from src.clinical_data import anes_op_time

Statistical Analysis

Chi-square analysis

Perform chi-square tests to check if two categorical variables are related or independent.

example usage

from statistics import chi2

chi2(df,
     dependent_var='death_inhosp',
     independent_var=['preop_htn', 'sex']
     )

Data visualisation

example usage

from visulisaion import figure_by_gender

figure_by_gender(df, 
                 bar_chart=False, # to create a bar chart if it is True
                 pie_chart=True, # to create a pie chart if it is True
                 filter_col='opname', # any column to filter on
                 filter_val='Lung lobectomy') # any value to filter on 

Example 1

SAS


Installation

Using SAS OnDemand for Academics

Usage

  • libname_surg.sas: To create a library named surg
  • csv_to_sas.sas: To import CSV file into a SAS dataset
  • clinical_data.sas: To standardise variable name and mapping raw data to CDISC SDTM (Study Data Tabulation Model), including Demographics, Adverse Events, and Laboratory Results
  • ouput_path.sas: To create a macro variable for output
  • exploring_data.sas: To create Frequency Report, Plots

Contact

Wei Jan Chang, [email protected]