forked from llltttppp/SS-NAN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
2061 lines (1819 loc) · 90.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Mask R-CNN
The main Mask R-CNN model implemenetation.
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""
from __future__ import division
import os
import sys
import glob
import random
import math
import datetime
import itertools
import json
import re
import logging
from collections import OrderedDict
import numpy as np
import scipy.misc
import scipy.ndimage
import tensorflow as tf
from tensorflow.python import debug as tfdbg
cfig=tf.ConfigProto(allow_soft_placement=True)
cfig.gpu_options.allow_growth=True
sess =tf.Session(config=cfig)
from psp_resnet_builder import ResNet,ResNet_mutiout
from keras.backend.tensorflow_backend import set_session
set_session(sess)
import keras
import keras.backend as K
import keras.layers as KL
import keras.initializers as KI
import keras.engine as KE
import keras.models as KM
import scipy.ndimage
import utils
# Requires TensorFlow 1.3+ and Keras 2.0.8+.
from distutils.version import LooseVersion
assert LooseVersion(tf.__version__) >= LooseVersion("1.3")
assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8')
############################################################
# Utility Functions
############################################################
def log(text, array=None):
"""Prints a text message. And, optionally, if a Numpy array is provided it
prints it's shape, min, and max values.
"""
if array is not None:
text = text.ljust(25)
text += ("shape: {:20} min: {:10.5f} max: {:10.5f}".format(
str(array.shape),
array.min() if array.size else "",
array.max() if array.size else ""))
print(text)
class BatchNorm(KL.BatchNormalization):
"""Batch Normalization class. Subclasses the Keras BN class and
hardcodes training=False so the BN layer doesn't update
during training.
Batch normalization has a negative effect on training if batches are small
so we disable it here.
"""
def call(self, inputs, training=None):
return super(self.__class__, self).call(inputs, training=None)
############################################################
# Resnet Graph
############################################################
# Code adopted from:
# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py
def identity_block(input_tensor, kernel_size, filters, stage, block,
use_bias=True):
"""The identity_block is the block that has no conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the nb_filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
"""
nb_filter1, nb_filter2, nb_filter3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a',
use_bias=use_bias)(input_tensor)
x = BatchNorm(axis=3, name=bn_name_base + '2a')(x)
x = KL.Activation('relu')(x)
x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
name=conv_name_base + '2b', use_bias=use_bias)(x)
x = BatchNorm(axis=3, name=bn_name_base + '2b')(x)
x = KL.Activation('relu')(x)
x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c',
use_bias=use_bias)(x)
x = BatchNorm(axis=3, name=bn_name_base + '2c')(x)
x = KL.Add()([x, input_tensor])
x = KL.Activation('relu', name='res'+str(stage)+block+'_out')(x)
return x
def conv_block(input_tensor, kernel_size, filters, stage, block,
strides=(2, 2), use_bias=True):
"""conv_block is the block that has a conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the nb_filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
Note that from stage 3, the first conv layer at main path is with subsample=(2,2)
And the shortcut should have subsample=(2,2) as well
"""
nb_filter1, nb_filter2, nb_filter3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = KL.Conv2D(nb_filter1, (1, 1), strides=strides,
name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)
x = BatchNorm(axis=3, name=bn_name_base + '2a')(x)
x = KL.Activation('relu')(x)
x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
name=conv_name_base + '2b', use_bias=use_bias)(x)
x = BatchNorm(axis=3, name=bn_name_base + '2b')(x)
x = KL.Activation('relu')(x)
x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x)
x = BatchNorm(axis=3, name=bn_name_base + '2c')(x)
shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides,
name=conv_name_base + '1', use_bias=use_bias)(input_tensor)
shortcut = BatchNorm(axis=3, name=bn_name_base + '1')(shortcut)
x = KL.Add()([x, shortcut])
x = KL.Activation('relu', name='res'+str(stage)+block+'_out')(x)
return x
def resnet_graph(input_image, architecture, stage5=False):
assert architecture in ["resnet50", "resnet101"]
# Stage 1
x = KL.ZeroPadding2D((3, 3))(input_image)
x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
x = BatchNorm(axis=3, name='bn_conv1')(x)
x = KL.Activation('relu')(x)
C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
# Stage 2
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
# Stage 3
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
# Stage 4
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
block_count = {"resnet50": 5, "resnet101": 22}[architecture]
for i in range(block_count):
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98+i))
C4 = x
# Stage 5
if stage5:
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
else:
C5 = None
return [C1, C2, C3, C4, C5]
############################################################
# Proposal Layer
############################################################
def apply_box_deltas_graph(boxes, deltas):
"""Applies the given deltas to the given boxes.
boxes: [N, 4] where each row is y1, x1, y2, x2
deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)]
"""
# Convert to y, x, h, w
height = boxes[:, 2] - boxes[:, 0]
width = boxes[:, 3] - boxes[:, 1]
center_y = boxes[:, 0] + 0.5 * height
center_x = boxes[:, 1] + 0.5 * width
# Apply deltas
center_y += deltas[:, 0] * height
center_x += deltas[:, 1] * width
height *= tf.exp(deltas[:, 2])
width *= tf.exp(deltas[:, 3])
# Convert back to y1, x1, y2, x2
y1 = center_y - 0.5 * height
x1 = center_x - 0.5 * width
y2 = y1 + height
x2 = x1 + width
result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out")
return result
def clip_boxes_graph(boxes, window):
"""
boxes: [N, 4] each row is y1, x1, y2, x2
window: [4] in the form y1, x1, y2, x2
"""
# Split corners
wy1, wx1, wy2, wx2 = tf.split(window, 4)
y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
# Clip
y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
return clipped
class SuperPixelFilterLayer(KE.Layer):
def __init__(self,max_superpixel_num,config=None,**kwargs):
super(SuperPixelFilterLayer, self).__init__(**kwargs)
self.max_superpixel_num = max_superpixel_num
self.config = config
def call(self, inputs):
feature_map = inputs[0]
superpixel_map = inputs[1]
f_shape = tf.shape(feature_map)
channels = f_shape[3]
s_shape = tf.shape(superpixel_map)
feature_map = tf.image.resize_bilinear(feature_map,[s_shape[1],s_shape[2]])
def superpixel_filter(f,s):
x=tf.reshape(f,[-1,channels])
y=tf.reshape(s,[-1])
x=tf.unsorted_segment_sum(x,y,self.max_superpixel_num)
weights=tf.cast(tf.bincount(y,minlength=self.max_superpixel_num,
maxlength=self.max_superpixel_num,weights=None),tf.float32)+1e-6
r=tf.gather(x/tf.expand_dims(weights,1),y)
r=tf.reshape(r,[s_shape[1],s_shape[2],channels])
return r
r_feature_map = utils.batch_slice([feature_map,superpixel_map],superpixel_filter,self.config.IMAGES_PER_GPU)
#result = tf.image.resize_bilinear(r_feature_map,[f_shape[1],f_shape[2]])
return r_feature_map
def compute_output_shape(self, input_shape):
return input_shape[1]+(input_shape[0][3],)
############################################################
def log2_graph(x):
"""Implementatin of Log2. TF doesn't have a native implemenation."""
return tf.log(x) / tf.log(2.0)
def clip_to_window(window, boxes):
"""
window: (y1, x1, y2, x2). The window in the image we want to clip to.
boxes: [N, (y1, x1, y2, x2)]
"""
boxes[:, 0] = np.maximum(np.minimum(boxes[:, 0], window[2]), window[0])
boxes[:, 1] = np.maximum(np.minimum(boxes[:, 1], window[3]), window[1])
boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], window[2]), window[0])
boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], window[3]), window[1])
return boxes
def refine_detections(rois, probs, deltas, window, config):
"""Refine classified proposals and filter overlaps and return final
detections.
Inputs:
rois: [N, (y1, x1, y2, x2)] in normalized coordinates
probs: [N, num_classes]. Class probabilities.
deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific
bounding box deltas.
window: (y1, x1, y2, x2) in image coordinates. The part of the image
that contains the image excluding the padding.
Returns detections shaped: [N, (y1, x1, y2, x2, class_id, score)]
"""
# Class IDs per ROI
class_ids = np.argmax(probs, axis=1)
# Class probability of the top class of each ROI
class_scores = probs[np.arange(class_ids.shape[0]), class_ids]
# Class-specific bounding box deltas
deltas_specific = deltas[np.arange(deltas.shape[0]), class_ids]
# Apply bounding box deltas
# Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates
refined_rois = utils.apply_box_deltas(
rois, deltas_specific * config.BBOX_STD_DEV)
# Convert coordiates to image domain
# TODO: better to keep them normalized until later
height, width = config.IMAGE_SHAPE[:2]
refined_rois *= np.array([height, width, height, width])
# Clip boxes to image window
refined_rois = clip_to_window(window, refined_rois)
# Round and cast to int since we're deadling with pixels now
refined_rois = np.rint(refined_rois).astype(np.int32)
# TODO: Filter out boxes with zero area
# Filter out background boxes
keep = np.where(class_ids > 0)[0]
# Filter out low confidence boxes
if config.DETECTION_MIN_CONFIDENCE:
keep = np.intersect1d(
keep, np.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[0])
# Apply per-class NMS
pre_nms_class_ids = class_ids[keep]
pre_nms_scores = class_scores[keep]
pre_nms_rois = refined_rois[keep]
nms_keep = []
for class_id in np.unique(pre_nms_class_ids):
# Pick detections of this class
ixs = np.where(pre_nms_class_ids == class_id)[0]
# Apply NMS
class_keep = utils.non_max_suppression(
pre_nms_rois[ixs], pre_nms_scores[ixs],
config.DETECTION_NMS_THRESHOLD)
# Map indicies
class_keep = keep[ixs[class_keep]]
nms_keep = np.union1d(nms_keep, class_keep)
keep = np.intersect1d(keep, nms_keep).astype(np.int32)
# Keep top detections
roi_count = config.DETECTION_MAX_INSTANCES
top_ids = np.argsort(class_scores[keep])[::-1][:roi_count]
keep = keep[top_ids]
# Arrange output as [N, (y1, x1, y2, x2, class_id, score)]
# Coordinates are in image domain.
result = np.hstack((refined_rois[keep],
class_ids[keep][..., np.newaxis],
class_scores[keep][..., np.newaxis]))
return result
def build_fpn_mask_graph(rois, feature_maps,
image_shape, pool_size, num_classes):
"""Builds the computation graph of the mask head of Feature Pyramid Network.
rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
coordinates.
feature_maps: List of feature maps from diffent layers of the pyramid,
[P2, P3, P4, P5]. Each has a different resolution.
image_shape: [height, width, depth]
pool_size: The width of the square feature map generated from ROI Pooling.
num_classes: number of classes, which determines the depth of the results
Returns: Masks [batch, roi_count, height, width, num_classes]
"""
# ROI Pooling
# Shape: [batch, boxes, pool_height, pool_width, channels]
x = PyramidROIAlign([pool_size, pool_size], image_shape,
name="roi_align_mask")([rois] + feature_maps)
# Conv layers
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv1")(x)
x = KL.TimeDistributed(KL.BatchNormalization(axis=3),
name='mrcnn_mask_bn1')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv2")(x)
x = KL.TimeDistributed(KL.BatchNormalization(axis=3),
name='mrcnn_mask_bn2')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv3")(x)
x = KL.TimeDistributed(KL.BatchNormalization(axis=3),
name='mrcnn_mask_bn3')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
name="mrcnn_mask_conv4")(x)
x = KL.TimeDistributed(KL.BatchNormalization(axis=3),
name='mrcnn_mask_bn4')(x)
x = KL.Activation('relu')(x)
x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2,2), strides=2, activation="relu"),
name="mrcnn_mask_deconv")(x)
x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"),
name="mrcnn_mask")(x)
return x
############################################################
# Loss Functions
############################################################
def smooth_l1_loss(y_true, y_pred):
"""Implements Smooth-L1 loss.
y_true and y_pred are typicallly: [N, 4], but could be any shape.
"""
diff = K.abs(y_true - y_pred)
less_than_one = K.cast(K.less(diff, 1.0), "float32")
loss = (less_than_one * 0.5 * diff**2) + (1-less_than_one) * (diff - 0.5)
return loss
def mrcnn_mask_loss_graph(target_masks, pred_masks,OHEM=True,KK=3):
"""Mask binary cross-entropy loss for the masks head.
target_masks: [batch, num_rois, height, width].
A float32 tensor of values 0 or 1. Uses zero padding to fill array.
target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.
pred_masks: [batch, proposals, height, width, num_classes] float32 tensor
with values from 0 to 1.
"""
# Reshape for simplicity. Merge first two dimensions into one.
# Compute binary cross entropy. If no positive ROIs, then return 0.
# shape: [batch, roi, num_classes]
loss =K.categorical_crossentropy(target_masks,pred_masks)*K.sum(target_masks,-1)
if OHEM:
shape = tf.shape(loss)
loss,_ = tf.nn.top_k(tf.reshape(loss,[-1,shape[1]*shape[2]]),k=tf.cast(shape[1]*shape[2]/KK,tf.int32),sorted=False)
else:
loss = K.sum(loss,[1,2])/K.sum(target_masks,[1,2,3])
loss = K.mean(loss)
loss = K.reshape(loss, [1, 1])
return loss
############################################################
# Data Generator
############################################################
def resize_image(image,config, min_dim=None, max_dim=None, padding=False,augment =False):
"""
Resizes an image keeping the aspect ratio.
min_dim: if provided, resizes the image such that it's smaller
dimension == min_dim
max_dim: if provided, ensures that the image longest side doesn't
exceed this value.
padding: If true, pads image with zeros so it's size is max_dim x max_dim
Returns:
image: the resized image
window: (y1, x1, y2, x2). If max_dim is provided, padding might
be inserted in the returned image. If so, this window is the
coordinates of the image part of the full image (excluding
the padding). The x2, y2 pixels are not included.
scale: The scale factor used to resize the image
padding: Padding added to the image [(top, bottom), (left, right), (0, 0)]
"""
# Default window (y1, x1, y2, x2) and default scale == 1.
h, w = image.shape[:2]
window = (0, 0, h, w)
scale = 1
# Scale?
if min_dim:
# Scale up but not down
scale = max(1,1.0* min_dim / min(h, w))
# Does it exceed max dim?
if max_dim:
image_max = max(h, w)
if round(image_max * scale) > max_dim:
scale = 1.0*max_dim / image_max
# Resize image and mask
if scale != 1:
if augment:
scale=scale*( np.random.random()*0.25+0.75 )
image = scipy.misc.imresize(
image, (int(round(h * scale)), int(round(w * scale))))
# Need padding?
image = mold_image(image.astype(np.float32),config)
if padding:
# Get new height and width
h, w = image.shape[:2]
top_pad = (max_dim - h) // 2
bottom_pad = max_dim - h - top_pad
left_pad = (max_dim - w) // 2
right_pad = max_dim - w - left_pad
padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)]
image = np.pad(image, padding, mode='constant', constant_values=0)
window = (top_pad, left_pad, h + top_pad, w + left_pad)
return image, window, scale, padding
def load_image_gt(dataset, config, image_id, augment=False,
use_mini_mask=False):
"""Load and return ground truth data for an image (image, mask, bounding boxes).
augment: If true, apply random image augmentation. Currently, only
horizontal flipping is offered.
use_mini_mask: If False, returns full-size masks that are the same height
and width as the original image. These can be big, for example
1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
224x224 and are generated by extracting the bounding box of the
object and resizing it to MINI_MASK_SHAPE.
Returns:
image: [height, width, 3]
shape: the original shape of the image before resizing and cropping.
bbox: [instance_count, (y1, x1, y2, x2, class_id)]
mask: [height, width, instance_count]. The height and width are those
of the image unless use_mini_mask is True, in which case they are
defined in MINI_MASK_SHAPE.
"""
# Load image and mask
image = dataset.load_image(image_id)
mask = dataset.load_mask(image_id)
shape = image.shape
if augment:
image,mask = utils.resize_corp_image_mask(image, np.expand_dims(mask,-1), config,min_dim=config.IMAGE_MIN_DIM,
max_dim=config.IMAGE_MAX_DIM,
padding=config.IMAGE_PADDING)
mask = np.squeeze(mask,-1)
window =[0,0,config.IMAGE_MAX_DIM,config.IMAGE_MAX_DIM]
else:
image, window, scale, padding = utils.resize_image(
image,
min_dim=config.IMAGE_MIN_DIM,
max_dim=config.IMAGE_MAX_DIM,
padding=config.IMAGE_PADDING,augment=False)
mask = utils.resize_mask(np.expand_dims(mask,-1), scale, padding)
mask = np.squeeze(mask,-1)
# Random horizontal flips.
if augment:
if random.randint(0, 1):
image = np.fliplr(image)
mask = np.fliplr(mask)
for v in range(3):
a=(mask==14+2*v)
b=(mask==14+2*v+1)
mask[a]=14+2*v+1
mask[b]=14+2*v
# Bounding boxes. Note that some boxes might be all zeros
# if the corresponding mask got cropped out.
# bbox: [num_instances, (y1, x1, y2, x2)]
active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
active_class_ids[class_ids] = 1
# Image meta data
image_meta = compose_image_meta(image_id, shape, window, active_class_ids)
return image, image_meta, mask
def data_generator(dataset, config, shuffle=True, augment=True, random_rois=0,
batch_size=1, detection_targets=False):
"""A generator that returns images and corresponding target class ids,
bounding box deltas, and masks.
dataset: The Dataset object to pick data from
config: The model config object
shuffle: If True, shuffles the samples before every epoch
augment: If True, applies image augmentation to images (currently only
horizontal flips are supported)
random_rois: If > 0 then generate proposals to be used to train the
network classifier and mask heads. Useful if training
the Mask RCNN part without the RPN.
batch_size: How many images to return in each call
detection_targets: If True, generate detection targets (class IDs, bbox
deltas, and masks). Typically for debugging or visualizations because
in trainig detection targets are generated by DetectionTargetLayer.
Returns a Python generator. Upon calling next() on it, the
generator returns two lists, inputs and outputs. The containtes
of the lists differs depending on the received arguments:
inputs list:
- images: [batch, H, W, C]
- image_meta: [batch, size of image meta]
- rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral)
- rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas.
- gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2, class_id)]
- gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width
are those of the image unless use_mini_mask is True, in which
case they are defined in MINI_MASK_SHAPE.
outputs list: Usually empty in regular training. But if detection_targets
is True then the outputs list contains target class_ids, bbox deltas,
and masks.
"""
b = 0 # batch item index
image_index = -1
image_ids = np.copy(dataset.image_ids)
error_count = 0
# Anchors
# [anchor_count, (y1, x1, y2, x2)]
# Keras requires a generator to run indefinately.
while True:
try:
# Increment index to pick next image. Shuffle if at the start of an epoch.
image_index = (image_index + 1) % len(image_ids)
if shuffle and image_index == 0:
np.random.shuffle(image_ids)
# Get GT bounding boxes and masks for image.
image_id = image_ids[image_index]
image, image_meta,gt_masks = \
load_image_gt(dataset, config, image_id, augment=augment)
# Skip images that have no instances. This can happen in cases
# where we train on a subset of classes and the image doesn't
# have any of the classes we care about
# RPN Targets
# Mask R-CNN Targets
if b == 0:
batch_image_meta = np.zeros((batch_size,)+image_meta.shape, dtype=image_meta.dtype)
batch_images = np.zeros((batch_size,)+image.shape, dtype=np.float32)
batch_gt_masks = np.zeros((batch_size, image.shape[0], image.shape[1]),dtype=np.uint8)
# If more instances than fits in the array, sub-sample from them.
# Add to batch
batch_image_meta[b] = image_meta
batch_images[b] = mold_image(image.astype(np.float32),config)
batch_gt_masks[b,:,:] = gt_masks
b += 1
# Batch full?
if b >= batch_size:
inputs = [batch_images, batch_image_meta, batch_gt_masks]
outputs = []
yield inputs, outputs
# start a new batch
b = 0
except (GeneratorExit, KeyboardInterrupt):
raise
except:
# Log it and skip the image
logging.exception("Error processing image {}".format(dataset.image_info[image_id]))
error_count += 1
if error_count > 5:
raise
############################################################
# MaskRCNN Class
############################################################
class GRenderLayer(KE.Layer):
def __init__(self,sigma,map_size,**kwargs):
super(GRenderLayer,self).__init__(**kwargs)
self.sigma = sigma
self.map_size=map_size
def call(self, inputs):
centers = tf.expand_dims(inputs,-1)
h=self.map_size[0]
w=self.map_size[1]
Wx,Wy =tf.meshgrid(tf.range(0,w),tf.range(0,h))
Wx=tf.expand_dims(tf.expand_dims(Wx,0),0)
Wy=tf.expand_dims(tf.expand_dims(Wy,0),0)
Wx=tf.cast(Wx,tf.float32)
Wy=tf.cast(Wy,tf.float32)
Cy=tf.expand_dims(centers[...,0,:],-1)
Cx=tf.expand_dims(centers[...,1,:],-1)
Dx=tf.cast(Cx,tf.float32)-Wx
Dy=tf.cast(Cy,tf.float32)-Wy
result=4/(np.sqrt(np.pi*2)*self.sigma)*tf.exp(-0.5*(Dx*Dx+Dy*Dy)/(self.sigma**2))*tf.cast(tf.sign(tf.cast(Cx+Cy,tf.int32)),tf.float32)
result=tf.transpose(result,[0,2,3,1])
return result
def compute_output_shape(self, input_shape):
return (input_shape[0],self.map_size[0],self.map_size[1],input_shape[1])
class ComputeCentersLayer(KE.Layer):
def __init__(self,num_classes,merge_dict=[0,1,1,0,1,2,0,2,0,3,0,2,3,1,4,5,6,7,8,9],**kwargs):
super(ComputeCentersLayer,self).__init__(**kwargs)
self.num_classes = num_classes
self.merge_dict=np.array(merge_dict)
assert self.num_classes==len(self.merge_dict),'num_classes must be equal to mergedict length'
def call(self, inputs):
heatmap = inputs
h=tf.shape(heatmap)[1]
w=tf.shape(heatmap)[2]
Wx,Wy =tf.meshgrid(tf.range(0,w),tf.range(0,h))
Wx=tf.expand_dims(tf.expand_dims(Wx,0),-1)
Wy=tf.expand_dims(tf.expand_dims(Wy,0),-1)
Wx=tf.cast(Wx,tf.float32)
Wy=tf.cast(Wy,tf.float32)
Dx=tf.split(heatmap*Wx,self.num_classes,-1)
Dy=tf.split(heatmap*Wy,self.num_classes,-1)
resultx=[]
resulty=[]
for v in range(1,np.max(self.merge_dict)+1):
sx=[Dx[j] for j in np.nonzero(self.merge_dict==v)[0]]
sy=[Dy[j] for j in np.nonzero(self.merge_dict==v)[0]]
resultx.append(tf.add_n(sx))
resulty.append(tf.add_n(sy))
resultx=tf.concat(resultx,-1)
resulty=tf.concat(resulty,-1)
result = tf.stack([tf.reduce_sum(resulty,[1,2])/(tf.count_nonzero(resulty,[1,2],dtype=tf.float32)+1e-6),
tf.reduce_sum(resultx,[1,2])/(1e-6+tf.count_nonzero(resultx,[1,2],dtype=tf.float32))],axis=-1)
return result
def compute_output_shape(self, input_shape):
return (input_shape[0],input_shape[3],2)
class MYSGD(keras.optimizers.SGD):
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
# momentum
shapes = [K.int_shape(p) for p in params]
moments = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + moments
for p, g, m in zip(params, grads, moments):
if 'class_conv/kernel' in p.name:
v=self.momentum * m - 10*lr * g
elif 'class_conv/bias' in p.name:
v=self.momentum * m - 20*lr * g
else:
v = self.momentum * m - lr * g # velocity
self.updates.append(K.update(m, v))
if self.nesterov:
new_p = p + self.momentum * v - lr * g
else:
new_p = p + v
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def build_maskconv_model():
y=KL.Input([None,None,256],dtype=tf.float32)
x=KL.Conv2D(256,(3,3),padding='same',name='mask_conv1')(y)
x=KL.BatchNormalization(name='mask_bn1')(x)
x=KL.Activation('relu')(x)
x=KL.Conv2D(256,(3,3),padding='same',name='mask_conv2')(x)
x=KL.BatchNormalization(name='mask_bn2')(x)
x=KL.Activation('relu')(x)
x=KL.Conv2D(256,(3,3),padding='same',name='mask_conv3')(x)
x=KL.BatchNormalization(name='mask_bn3')(x)
x=KL.Activation('relu')(x)
x=KL.Conv2D(256,(3,3),padding='same',name='mask_conv4')(x)
x=KL.BatchNormalization(name='mask_bn4')(x)
x=KL.Activation('relu')(x)
return KM.Model(inputs=[y], outputs=[x],name='maskconv_model')
class Resnet101FCN():
"""Encapsulates the Mask RCNN model functionality.
The actual Keras model is in the keras_model property.
"""
def __init__(self, mode, config, model_dir,trainmode='finetune'):
"""
mode: Either "training" or "inference"
config: A Sub-class of the Config class
model_dir: Directory to save training logs and trained weights
"""
assert mode in ['training', 'inference']
self.mode = mode
self.config = config
self.model_dir = model_dir
self.set_log_dir()
self.keras_model = self.build(mode=mode, config=config,train_submode=trainmode)
def build(self, mode, config,train_submode='finetune'):
"""Build Mask R-CNN architecture.
input_shape: The shape of the input image.
mode: Either "training" or "inference". The inputs and
outputs of the model differ accordingly.
"""
assert mode in ['training', 'inference']
# Image size must be dividable by 2 multiple times
h, w = config.IMAGE_SHAPE[:2]
if h/2**5 != int(h/2**5) or w/2**5 != int(w/2**5):
raise Exception("Image size must be dividable by 2 at least 6 times "
"to avoid fractions when downscaling and upscaling."
"For example, use 256, 320, 384, 448, 512, ... etc. ")
# Inputs
input_image = KL.Input(shape=config.IMAGE_SHAPE.tolist(), name="input_image")
input_image_meta = KL.Input(shape=[None], name="input_image_meta")
if mode == "training":
# RPN GT
# Normalize coordinates
h, w = K.shape(input_image)[1], K.shape(input_image)[2]
image_scale = K.cast(K.stack([h, w, h, w, 1], axis=0), tf.float32)
# GT Masks (zero padded)
# [batch, height, width, MAX_GT_INSTANCES]
input_gt_masks = KL.Input(
shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1]],
name="input_gt_masks", dtype=tf.uint8)
gt_masks=KL.Lambda(lambda x:K.one_hot(tf.cast(x,tf.uint8),config.NUM_CLASSES),name='input_onehot')(input_gt_masks)
# Build the shared convolutional layers.
# Bottom-up Layers
# Returns a list of the last layers of each stage, 5 in total.
# Don't create the thead (stage 5), so we pick the 4th item in the list.
_, C2, C3, C4, C5 = resnet_graph(input_image, "resnet101", stage5=True)
# Top-down Layers
# TODO: add assert to varify feature map sizes match what's in config
P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5)
P4 = KL.Add(name="fpn_p4add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
KL.Conv2D(256, (1, 1), name='fpn_c4p4')(C4)])
P3 = KL.Add(name="fpn_p3add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)])
P2 = KL.Add(name="fpn_p2add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)])
# Attach 3x3 conv to all P layers to get the final feature maps.
P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2)
P3 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p3")(P3)
P4 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p4")(P4)
P5 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p5")(P5)
# P6 is used for the 5th anchor scale in RPN. Generated by
# subsampling from P5 with stride of 2.
mask_feature_maps = [P2, P3, P4, P5]
mask_logits_outputs=[]
Conv_model =build_maskconv_model()
for i,v in enumerate( mask_feature_maps):
x=Conv_model(v)
x=KL.Lambda(lambda x:tf.image.resize_bilinear(x,config.BACKBONE_SHAPES[0]))(x)
mask_logits_outputs.append(x)
x=KL.average(mask_logits_outputs)
x=KL.Conv2D(config.NUM_CLASSES,(3,3),padding='same',name='mask_class_conv')(x)
mask_logits=KL.Lambda(lambda x:tf.image.resize_bilinear(x,[config.IMAGE_SHAPE[0],config.IMAGE_SHAPE[1]]),name='mask_logits')(x)
mask_prob = KL.Activation('softmax',name='mask_prob')(mask_logits)
mask=KL.Lambda(lambda x:tf.argmax(x,-1),name='mask')(mask_prob)
if mode == "training":
# Class ID mask to mark class IDs supported by the dataset the image
# came from.
if train_submode=='finetune':
mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x,OHEM=True), name="resfcn_mask_loss")(
[gt_masks,mask_prob])
elif train_submode=='finetune_ssloss':
generate_gmap=GRenderLayer(1,map_size=[config.IMAGE_SHAPE[0],config.IMAGE_SHAPE[1]],name='generate_gmap')
generate_centers=ComputeCentersLayer(num_classes=config.NUM_CLASSES,name='generate_centers')
predict_mask = KL.Lambda(lambda x:K.one_hot(tf.cast(x,tf.int32),config.NUM_CLASSES))(mask)
c1=generate_centers(gt_masks)
c2=generate_centers(predict_mask)
gt_cmap=generate_gmap(c1)
pre_cmap=generate_gmap(c2)
mask_loss=KL.Lambda(lambda x:ss_mask_loss_graph(*x),name="resfcn_mask_loss")([gt_masks,mask_prob,gt_cmap,pre_cmap])
outputs = [mask_prob,mask]
else:
print('Incorrect Option of TrainSubMode')
raise FileNotFoundError
# Model
inputs = [input_image, input_image_meta, input_gt_masks]
pixelacc =KL.Lambda(lambda x:pixelacc_graph(*x),name='pixelacc')([gt_masks,mask_prob])
outputs = [mask_prob,mask,mask_loss,pixelacc]
model = KM.Model(inputs, outputs, name='resnet101_fcn')
else:
model = KM.Model([input_image, input_image_meta],
[mask_prob,mask],
name='resnet101_fcn')
# Add multi-GPU support.
if config.GPU_COUNT > 1:
from parallel_model import ParallelModel
model = ParallelModel(model, config.GPU_COUNT)
return model
def find_last(self):
"""Finds the last checkpoint file of the last trained model in the
model directory.
Returns:
log_dir: The directory where events and weights are saved
checkpoint_path: the path to the last checkpoint file
"""
# Get directory names. Each directory corresponds to a model
dir_names = next(os.walk(self.model_dir))[1]
key = self.config.NAME.lower()
dir_names = filter(lambda f: f.startswith(key), dir_names)
dir_names = sorted(dir_names)
if not dir_names:
return None, None
# Pick last directory
dir_name = os.path.join(self.model_dir, dir_names[-1])
# Find the last checkpoint
checkpoints = next(os.walk(dir_name))[2]
checkpoints = filter(lambda f: f.startswith(self.__class__.__name__), checkpoints)
checkpoints = sorted(checkpoints)
if not checkpoints:
return dir_name, None
checkpoint = os.path.join(dir_name, checkpoints[-1])
return dir_name, checkpoint
def load_weights(self, filepath, by_name=False, exclude=None):
"""Modified version of the correspoding Keras function with
the addition of multi-GPU support and the ability to exclude
some layers from loading.
exlude: list of layer names to excluce
"""
import h5py
from keras.engine import topology
if exclude:
by_name = True
if h5py is None:
raise ImportError('`load_weights` requires h5py.')
f = h5py.File(filepath, mode='r')
if 'layer_names' not in f.attrs and 'model_weights' in f:
f = f['model_weights']
# In multi-GPU training, we wrap the model. Get layers
# of the inner model because they have the weights.
keras_model = self.keras_model
layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
else keras_model.layers
# Exclude some layers
if exclude:
layers = filter(lambda l: l.name not in exclude, layers)
if by_name:
models = filter(lambda l: l.__class__.__name__ =='Model', layers)
players = filter(lambda l: l.__class__.__name__ !='Model', layers)
topology.load_weights_from_hdf5_group_by_name(f, players)
for v in models:
weights=[]
for j in v.weights:
try:
weights.append((j,f[v.name][j.name]))
except:
print(j.name+' not found !\n')
K.batch_set_value(weights)
else:
topology.load_weights_from_hdf5_group(f, layers)
if hasattr(f, 'close'):
f.close()
# Update the log directory
self.set_log_dir(filepath)
def get_imagenet_weights(self):
"""Downloads ImageNet trained weights from Keras.
Returns path to weights file.
"""
from keras.utils.data_utils import get_file
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\
'releases/download/v0.2/'\
'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
TF_WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
md5_hash='a268eb855778b3df3c7506639542a6af')
return weights_path
def compile(self, learning_rate, momentum):
"""Gets the model ready for training. Adds losses, regularization, and
metrics. Then calls the Keras compile() function.
"""
# Optimizer object
optimizer = MYSGD(lr=learning_rate, momentum=momentum,
clipnorm=5.0)
# Add Losses
# First, clear previously set losses to avoid duplication
self.keras_model._losses = []
self.keras_model._per_input_losses = {}
loss_names = ["resfcn_mask_loss","pixelacc"]
for name in loss_names:
layer = self.keras_model.get_layer(name)
if layer.output in self.keras_model.losses:
continue
self.keras_model.add_loss(tf.reduce_mean(layer.output, keep_dims=False))
# Add L2 Regularization
reg_losses = [keras.regularizers.l2(self.config.WEIGHT_DECAY)(w)
for w in self.keras_model.trainable_weights]
self.keras_model.add_loss(tf.add_n(reg_losses))
# Compile
self.keras_model.compile(optimizer=optimizer, loss=[None]*len(self.keras_model.outputs))
# Add metrics