forked from Justin-Tan/generative-compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
77 lines (69 loc) · 1.72 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python3
class config_train(object):
mode = 'gan-train'
num_epochs = 512
batch_size = 1
ema_decay = 0.999
G_learning_rate = 2e-4
D_learning_rate = 2e-4
lr_decay_rate = 2e-5
momentum = 0.9
weight_decay = 5e-4
noise_dim = 128
optimizer = 'adam'
kernel_size = 3
diagnostic_steps = 256
# WGAN
gradient_penalty = True
lambda_gp = 10
weight_clipping = False
max_c = 1e-2
n_critic_iterations = 20
# Compression
lambda_X = 12
channel_bottleneck = 8
sample_noise = True
use_vanilla_GAN = False
use_feature_matching_loss = True
upsample_dim = 256
multiscale = True
feature_matching_weight = 10
use_conditional_GAN = False
class config_test(object):
mode = 'gan-test'
num_epochs = 512
batch_size = 1
ema_decay = 0.999
G_learning_rate = 2e-4
D_learning_rate = 2e-4
lr_decay_rate = 2e-5
momentum = 0.9
weight_decay = 5e-4
noise_dim = 128
optimizer = 'adam'
kernel_size = 3
diagnostic_steps = 256
# WGAN
gradient_penalty = True
lambda_gp = 10
weight_clipping = False
max_c = 1e-2
n_critic_iterations = 5
# Compression
lambda_X = 12
channel_bottleneck = 8
sample_noise = True
use_vanilla_GAN = False
use_feature_matching_loss = True
upsample_dim = 256
multiscale = True
feature_matching_weight = 10
use_conditional_GAN = False
class directories(object):
train = 'data/cityscapes_paths_train.h5'
test = 'data/cityscapes_paths_test.h5'
val = 'data/cityscapes_paths_val.h5'
tensorboard = 'tensorboard'
checkpoints = 'checkpoints'
checkpoints_best = 'checkpoints/best'
samples = 'samples/cityscapes'