-
Notifications
You must be signed in to change notification settings - Fork 7
/
Ng_DLMooc_c5wk1.html
973 lines (898 loc) · 50.7 KB
/
Ng_DLMooc_c5wk1.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
<!DOCTYPE html>
<html lang="zh-Hant"
>
<head>
<title>[Sequential Models] week1. Recurrent Neural Networks - mx's blog</title>
<!-- Using the latest rendering mode for IE -->
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="theme-color" content="#6b5594">
<meta name="msapplication-navbutton-color" content="#6b5594">
<meta name="apple-mobile-web-app-status-bar-style" content="#6b5594">
<link rel="manifest" href="/manifest.json">
<link rel="canonical" href="https://x-wei.github.io/Ng_DLMooc_c5wk1.html">
<meta name="author" content="mx" />
<meta name="keywords" content="deep learning" />
<meta name="description" content="week1 Created Friday 02 February 2018 Why sequence models examples of seq data (either input or output): speech recognition music generation sentiment classification DNA seq analysis Machine translation video activity recognition name entity recognition (NER) → in this course: learn models applicable to these different settings. Notation motivating example: NER (Each ..." />
<meta property="og:site_name" content="mx's blog" />
<meta property="og:type" content="article"/>
<meta property="og:title" content="[Sequential Models] week1. Recurrent Neural Networks"/>
<meta property="og:url" content="https://x-wei.github.io/Ng_DLMooc_c5wk1.html"/>
<meta property="og:description" content="week1 Created Friday 02 February 2018 Why sequence models examples of seq data (either input or output): speech recognition music generation sentiment classification DNA seq analysis Machine translation video activity recognition name entity recognition (NER) → in this course: learn models applicable to these different settings. Notation motivating example: NER (Each ..."/>
<meta property="article:published_time" content="2018-02-02" />
<meta property="article:section" content="notes" />
<meta property="article:tag" content="deep learning" />
<meta property="article:author" content="mx" />
<meta property="og:image"
content="https://x-wei.github.io/Ng_DLMooc_c5wk1.png"/>
<!-- Bootstrap -->
<link href="https://x-wei.github.io/theme/css/bootstrap.min.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/css/font-awesome.min.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/css/pygments/manni.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/tipuesearch/tipuesearch.css" rel="stylesheet">
<link rel="stylesheet" href="https://x-wei.github.io/theme/css/style.css" type="text/css"/>
<link href="https://x-wei.github.io/feeds/atom.xml" type="application/atom+xml" rel="alternate"
title="mx's blog ATOM Feed"/>
<link href="https://x-wei.github.io/theme/css/material.min.css" rel="stylesheet">
<link href="https://x-wei.github.io/theme/css/ripples.css" rel="stylesheet">
</head>
<body>
<div style="display:none" id="title">[Sequential Models] week1. Recurrent Neural Networks - mx's blog</div>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-ex1-collapse">
<span class="sr-only">切换导航</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a href="https://x-wei.github.io/" class="navbar-brand">
mx's blog </a>
</div>
<div class="collapse navbar-collapse navbar-ex1-collapse">
<ul class="nav navbar-nav">
<li class="dropdown hidden-md hidden-lg hidden-xl">
<a class="dropdown-toggle" data-toggle="dropdown" href="javascript:void(0)">
<i class="fa fa-user"></i><span class="caret"></span>
</a>
<ul class="dropdown-menu">
</ul>
</li>
<ul class="nav navbar-nav hidden-xs hidden-sm">
</ul>
</ul>
<ul class="nav navbar-nav hidden-md hidden-lg hidden-xl">
<li class="dropdown hidden-md hidden-lg hidden-xl">
<a class="dropdown-toggle" data-toggle="dropdown" href="javascript:void(0)">
<i class="fa fa-folder-o"></i><span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li >
<a href="https://x-wei.github.io/category/misc.html"><i class="fa fa-folder-o"></i> Misc</a>
</li>
<li >
<a href="https://x-wei.github.io/category/music.html"><i class="fa fa-folder-o"></i> Music</a>
</li>
<li class="active">
<a href="https://x-wei.github.io/category/notes.html"><i class="fa fa-folder-o"></i> Notes</a>
</li>
<li >
<a href="https://x-wei.github.io/category/soft.html"><i class="fa fa-folder-o"></i> Soft</a>
</li>
<li >
<a href="https://x-wei.github.io/category/tech.html"><i class="fa fa-folder-o"></i> Tech</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav hidden-xs hidden-sm">
<li >
<a href="https://x-wei.github.io/category/misc.html"><i class="fa fa-folder-o"></i> Misc</a>
</li>
<li >
<a href="https://x-wei.github.io/category/music.html"><i class="fa fa-folder-o"></i> Music</a>
</li>
<li class="active">
<a href="https://x-wei.github.io/category/notes.html"><i class="fa fa-folder-o"></i> Notes</a>
</li>
<li >
<a href="https://x-wei.github.io/category/soft.html"><i class="fa fa-folder-o"></i> Soft</a>
</li>
<li >
<a href="https://x-wei.github.io/category/tech.html"><i class="fa fa-folder-o"></i> Tech</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right hidden-sm hidden-md hidden-lg hidden-xl">
<li class="dropdown hidden-md hidden-lg hidden-xl">
<a class="dropdown-toggle" data-toggle="dropdown" href="javascript:void(0)">
<i class="fa fa-search"></i><span class="caret"></span>
</a>
<ul class="dropdown-menu">
<li><span>
<form class="navbar-search" action="/search.html">
<input type="text" class="search-query form-control col-lg-16" placeholder="Search" name="q" id="tipue_search_input" required>
</form></span>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-right navbar-form hidden-xs">
<li><span>
<form class="navbar-search" action="/search.html">
<input type="text" class="search-query form-control col-lg-16" placeholder="查找" name="q" id="tipue_search_input" required>
</form></span>
</li>
</ul>
<ul class="nav navbar-nav navbar-right hidden-xs">
<li><a href="https://x-wei.github.io/archives.html"><i class="fa fa-th-list"></i><span class="icon-label">Archive</span></a></li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
</div> <!-- /.navbar -->
<!-- Banner -->
<!-- End Banner -->
<div class="container" style="min-height: 100%;height: auto !important;height: 100%;">
<div class="row" style="padding-bottom:80px;padding-top:80px;">
<div class="col-xl-21 col-lg-20 col-md-18">
<div id="loading-block">
<ol class="breadcrumb">
<li><a href="https://x-wei.github.io/" title="mx's blog"><i class="fa fa-home fa-lg"></i></a></li>
<li><a href="https://x-wei.github.io/category/notes.html" title="notes">notes</a></li>
<li class="active">[Sequential Models] week1. Recurrent Neural Networks</li>
</ol>
<section id="content" class="article-content">
<article>
<header class="page-header jumbotron jumbotron-primary panel-primary" id="article-header">
<div class="panel-heading">
<h1>
[Sequential Models] week1. Recurrent Neural Networks
<a href="https://x-wei.github.io/Ng_DLMooc_c5wk1.html"
rel="bookmark"
class="btn btn-primary btn-lg"
title="到 [Sequential Models] week1. Recurrent Neural Networks 的永久链接">
<i class="mdi-action-launch"></i>
</a>
</h1>
</div>
<div class="panel-body">
<div class="post-info">
<span class="published">
<time datetime="2018-02-02T00:00:00+01:00"><i class="fa fa-calendar"></i> Fri, 02 Feb 2018</time>
</span>
<span class="btn-group">
<a href="https://x-wei.github.io/tag/deep-learning.html" class="btn btn-primary btn-xs"><i class="fa fa-tag"></i> deep learning</a>
</span>
<span class="label label-default">Series</span>
Part 14 of «Andrew Ng Deep Learning MOOC»
</div><!-- /.post-info --> </div>
</header>
<div class="entry-content jumbotron" id="article-content">
<div class="panel panel-default">
<div class="panel-heading">
目录
</div>
<div class="panel-boy">
<div id="toc"><ul><li><a class="toc-href" href="#week1" title="week1">week1</a><ul><li><a class="toc-href" href="#why-sequence-models" title="Why sequence models">Why sequence models</a></li><li><a class="toc-href" href="#notation" title="Notation">Notation</a></li><li><a class="toc-href" href="#recurrent-neural-network-model" title="Recurrent Neural Network Model">Recurrent Neural Network Model</a><ul><li><a class="toc-href" href="#rnn" title="RNN">RNN</a></li><li><a class="toc-href" href="#rnn-forward-prop" title="RNN Forward prop">RNN Forward prop</a></li></ul></li><li><a class="toc-href" href="#backpropagation-through-time_1" title="Backpropagation through time">Backpropagation through time</a></li><li><a class="toc-href" href="#different-types-of-rnns" title="Different types of RNNs">Different types of RNNs</a></li><li><a class="toc-href" href="#language-model-and-sequence-generation" title="Language model and sequence generation">Language model and sequence generation</a></li><li><a class="toc-href" href="#sampling-novel-sequences" title="Sampling novel sequences">Sampling novel sequences</a></li><li><a class="toc-href" href="#vanishing-gradients-with-rnns" title="Vanishing gradients with RNNs">Vanishing gradients with RNNs</a></li><li><a class="toc-href" href="#gated-recurrent-unit-gru" title="Gated Recurrent Unit (GRU)">Gated Recurrent Unit (GRU)</a></li><li><a class="toc-href" href="#long-short-term-memory-lstm" title="Long Short Term Memory (LSTM)">Long Short Term Memory (LSTM)</a></li><li><a class="toc-href" href="#bidirectional-rnn" title="Bidirectional RNN">Bidirectional RNN</a></li><li><a class="toc-href" href="#deep-rnns" title="Deep RNNs">Deep RNNs</a></li></ul></li></ul></div>
</div>
</div>
<h1 id="week1">week1</h1>
<p>Created Friday 02 February 2018 </p>
<h3 id="why-sequence-models">Why sequence models</h3>
<p>examples of seq data (<em>either input or output</em>): </p>
<ul>
<li>speech recognition </li>
<li>music generation </li>
<li>sentiment classification </li>
<li>DNA seq analysis </li>
<li>Machine translation </li>
<li>video activity recognition </li>
<li>name entity recognition (<strong>NER</strong>) </li>
</ul>
<p>→ in this course: learn models applicable to these different settings. </p>
<h3 id="notation">Notation</h3>
<p>motivating example: NER (Each word: whether the word is part of a person's name.) </p>
<ul>
<li><code>x^<t></code> / <code>y^<t></code>: t-th element in input/output sequence. </li>
<li><code>X^(i)</code>: i-th training example </li>
<li><code>T_x^(i)</code>: length of i-th training example sequence </li>
</ul>
<p><img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image001.png"/><br/>
<strong>how to repr each words in a sentences (x<i>)</i></strong> </p>
<ul>
<li><em>vocabulary</em>: list of ~10k possible tokens (+"<unk>" for unknown words) </unk></li>
<li><em>one-hot</em> repr for each word </li>
</ul>
<p><img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image003.png"/> </p>
<h3 id="recurrent-neural-network-model">Recurrent Neural Network Model</h3>
<p><strong>why not a standard NN</strong> </p>
<ul>
<li>input/output are of different length (padding might not be a good representation) </li>
<li>doesn't share features learned across different positions in text </li>
</ul>
<p>→ using a better representation helps to reduce number of parameters. </p>
<h4 id="rnn">RNN</h4>
<p>motivation example: output length = input length </p>
<ul>
<li>for each input <code>x<t></code>, → feed to RNN → compute <em>activation</em>(hidden state) <code>a<t></code>, and output <code>y<t></code>, </li>
<li><code>y<t>=f(a<t>)</code>, <code>a<t>=f(x<t>, a<t-1>)</code>, i.e. a<t> depends on previous state and current input. </t></li>
<li>parameters <code>W_ax</code> / <code>W_aa</code> / <code>W_ya</code> are shared across all time steps. </li>
</ul>
<p>⇒ <code>y<t></code> depends on <code>x<1>...x<t></code>, limit: only depend on <em>previous</em> words ("unidirectional"). </p>
<p>Unrolled diagram:<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image006.png"/><br/>
Or drawing a recurrent loop (harder to understand than unrolled version):<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image007.png"/> </p>
<h4 id="rnn-forward-prop">RNN Forward prop</h4>
<p>formula to calculate <code>a<t></code> and <code>y<t></code>:<br/>
a<t> = g(W_aa * a<t-1> + W_ax * x<t> + b_a)<br/>
y<t> = g(W_ya * a<t> + b_y)<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image008.png"/><br/>
Simplified annotation: stack <code>a<t-1></code> and <code>x<t></code>, <code>W_a = [W_aa, W_ax]</code><br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image009.png"/> </t></t></t></t-1></t></p>
<h3 id="backpropagation-through-time_1">Backpropagation through time</h3>
<p>Parameters: <code>W_y</code> and <code>W_a</code><br/>
loss function: log loss at each timestep (assume predictions y<t> are binary)<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image011.png"/><br/>
→ backporp through the computation graph:<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image012.png"/> </t></p>
<h3 id="different-types-of-rnns">Different types of RNNs</h3>
<p><strong>many-to-many</strong>: </p>
<ul>
<li>T_x = T_y, one prediction per timestep. </li>
</ul>
<p><img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image013.png"/> </p>
<ul>
<li>T_x != T_y, e.g. machine translation </li>
</ul>
<p>having a <em>encoder</em> and a <em>decoder</em>:<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image017.png"/><br/>
<strong>many-to-one</strong>:<br/>
e.g. sentence classification<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image014.png"/><br/>
<strong>one-to-many</strong>:<br/>
e.g. music generation<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image015.png"/> </p>
<h3 id="language-model-and-sequence-generation">Language model and sequence generation</h3>
<p><strong>Language model</strong><br/>
motivation example: speech recognition, <br/>
<em>"The apple and the pear salad" </em>VS<em> "The apple and the pair salad"</em><br/>
language model: <em>give probability of a sentence</em> P(sentence). </p>
<p><strong>Building language model with RNN</strong><br/>
Training set: large corpus of text. </p>
<ul>
<li>tokenize </li>
<li>vocabulary size </li>
<li>unknow word "<unk>". </unk></li>
</ul>
<p><strong>RNN for seq generation</strong> </p>
<ul>
<li>output <code>y<t></code>: softmax of <em>probability for each word</em>. </li>
<li><code>y<t+1></code>: make prediction <em>given the correct previous word</em> </li>
<li>like this predict one word at a time. </li>
</ul>
<p><img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image019.png"/><br/>
Loss function: cross entropy (<em>actual word VS probability of this word</em>) at each timestep.<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image020.png"/> </p>
<h3 id="sampling-novel-sequences">Sampling novel sequences</h3>
<p>Get a sense of what's learned: sample nouvel seqs.<br/>
From training, the RNN has a distribution of sequences <code>P(y<t> | y<1...t-1>)</code>.<br/>
In sample: let the model generate sequences (<code>np.random.choice</code>): </p>
<ul>
<li>feed previously gen word as input to next step </li>
<li>include <eos> token in vocab to finish </eos></li>
<li>reject <unk> tokens </unk></li>
</ul>
<p><strong>char-level language model</strong><br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image021.png"/> </p>
<ul>
<li>pro: no <unk> token </unk></li>
<li>con: much longer sequences, more expensive to train. </li>
</ul>
<h3 id="vanishing-gradients-with-rnns">Vanishing gradients with RNNs</h3>
<p>long-range dependencies are hard to capture: <br/>
e.g. "<em>the cat ........ was full</em>" VS "<em>the cats ...... were full</em>" </p>
<p>this is due to vanishing gradients:<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image022.png"/> </p>
<p>For exploding gradients: apply <em>gradient clipping</em> (restrict gradient norm). </p>
<h3 id="gated-recurrent-unit-gru">Gated Recurrent Unit (GRU)</h3>
<p>Modification of RNN to capture long range dependencies. </p>
<p><em>Visualization of a RNN unit:</em><br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image023.png"/> </p>
<p><strong>(simplified) GRU</strong> </p>
<ul>
<li>Extra <em>memory cell</em>: <code>c<t>=a<t></code>, (replaces output activation). </li>
<li><em>Candidate</em> value of c<t>: <code>c_tilde<t>=tanh(Wc * [c<t-1>, x<t>] + b_c)</code> </t></li>
<li><strong>Gate</strong><em> (between 0 and 1, conceptually consider it as binary)</em>: </li>
</ul>
<p><code>Gamme_u = sigmoid(W_u * [c<t-1>, x<t>] + b_u)</code><br/>
subscript "<em>u</em>" stands for "<em>update</em>", i.e. whether we want to update current memory cell </p>
<ul>
<li>Actual value of <code>c<t> = Gamme_u * c_tilde<t> + (1-Gamma_u) * c<t-1></code> (<code>*</code> is element-wise multiplication) </li>
</ul>
<p>i.e. <code>c<t></code> can be conserved for long range before being updated<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image024.png"/><br/>
Visualization of GRU unit (maybe equations are more understandable...):<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image025.png"/> </p>
<p><strong>full GRU</strong><br/>
for candidate <code>c_tilde<t></code>, add one more gate <code>Gamme_r</code>: controlling how much <code>c<t-1></code> contributes to <code>c_tilde<t></code>("<em>r</em>" for "<em>relevance</em>", i.e. how relevant <code>c<t-1></code> is for <code>c_tilde<t></code>)<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image026.png"/> </p>
<h3 id="long-short-term-memory-lstm">Long Short Term Memory (LSTM)</h3>
<p>More powerful and general version of GRU. </p>
<ul>
<li>output <code>a<t></code> no longer equals to memory cell <code>c<t></code> (but a <em>gated</em> version of it, see below) </li>
<li>candidate <code>c_tilde<t></code> depends on <code>a<t-1></code> instead of <code>c<t-1></code> </li>
<li><em>two update gates</em>: <code>Gamma_u</code> (<em>update gate</em>) and <code>Gamma_f</code> (<em>forget gate</em>) </li>
<li><em>output gate</em>: <code>Gamma_o</code> </li>
<li>value of <code>c<t> = Gamma_u * c_tilde<t> + Gamma_f * c<t-1></code> </li>
<li>value of <code>a<t> = Gamma_o * c<t></code> </li>
</ul>
<p><img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image027.png"/><br/>
Visualization:<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image028.png"/><br/>
Intuition: c<t> can be kept for long time if gates are set properly.<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image029.png"/> </t></p>
<p>Variant: let the gates depend on c<t-1> as well ("<em>peephole connection</em>")<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image030.png"/> </t-1></p>
<p><strong>GRU vs LSTM</strong> </p>
<ul>
<li>LSTM is proposed earlier </li>
<li>GRU as a simplified version of LSTM </li>
<li>GRU easier to train larger NN (2 gates instead of 3) </li>
<li>LSTM more powerful, recommended default choice to try </li>
</ul>
<h3 id="bidirectional-rnn">Bidirectional RNN</h3>
<p>Getting information from the future.<br/>
motivation example: <br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image031.png"/> </p>
<p><strong>Bidirectional RNN (BRNN)</strong> </p>
<ul>
<li><em>forward and backword</em> recurrent components </li>
<li>computation graph is still acyclic </li>
<li>at t, both information from the past and the future are passed in </li>
<li><em>BRNN with LSTM blocks</em> are typically the first thing to try in NLP problems </li>
</ul>
<p><img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image032.png"/> </p>
<h3 id="deep-rnns">Deep RNNs</h3>
<p>Complex NN: stack multiple RNNs (having 3 RNN layers is already a lot).0<br/>
notation: <code>a[l]<t></code> for activation in layer <code>l</code> and time <code>t</code>.<br/>
<img alt="" class="img-responsive" src="../images/Ng_DLMooc_c5wk1/pasted_image033.png"/> </p>
</div>
<div class="entry-content jumbotron" id="source-content" style="display: none">
<!-- <pre><code id="source-code">
</code></pre> -->
<div id="source-code"></div>
</div>
<!-- /.entry-content -->
<div class="row" id="prevnext">
<div class="col-xs-12">
<a href="https://x-wei.github.io/Ng_DLMooc_c4wk4.html" class="btn btn-default btn-lg" style="float:left;clear:both;background-color:#fff;">
<h4><i class="fa fa-arrow-left"></i>
[Convolutional Neural Networks] week4. Special applications: Face recognition & Neural style transfer
</h4>
</a>
</div>
<div class="col-xs-12">
<a href="https://x-wei.github.io/Ng_DLMooc_c5wk2.html" class="btn btn-default btn-lg" style="float:right;clear:both;background-color:#fff;">
<h4>
[Sequential Models] week2. Natural Language Processing & Word Embeddings<i class="fa fa-arrow-right"></i>
</h4>
</a>
</div>
</div>
<div class="panel panel-default" id="series">
<div class="panel-heading">
<h4>
Part 14 of series «Andrew Ng Deep Learning MOOC»:
</h4>
</div>
<ul class="list-group">
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c1wk1.html' style="text-align:left">[Neural Networks and Deep Learning] week1. Introduction to deep learning</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c1wk2.html' style="text-align:left">[Neural Networks and Deep Learning] week2. Neural Networks Basics</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c1wk3.html' style="text-align:left">[Neural Networks and Deep Learning] week3. Shallow Neural Network</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c1wk4.html' style="text-align:left">[Neural Networks and Deep Learning] week4. Deep Neural Network</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c2wk1.html' style="text-align:left">[Improving Deep Neural Networks] week1. Practical aspects of Deep Learning</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c2wk2.html' style="text-align:left">[Improving Deep Neural Networks] week2. Optimization algorithms</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c2wk3.html' style="text-align:left">[Improving Deep Neural Networks] week3. Hyperparameter tuning, Batch Normalization and Programming Frameworks</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c3wk1.html' style="text-align:left">[Structuring Machine Learning Projects] week1. ML Strategy (1)</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c3wk2.html' style="text-align:left">[Structuring Machine Learning Projects] week2. ML Strategy (2)</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c4wk1.html' style="text-align:left">[Convolutional Neural Networks] week1. Foundations of Convolutional Neural Networks</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c4wk2.html' style="text-align:left">[Convolutional Neural Networks] week2. Deep convolutional models: case studies</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c4wk3.html' style="text-align:left">[Convolutional Neural Networks] week3. Object detection</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c4wk4.html' style="text-align:left">[Convolutional Neural Networks] week4. Special applications: Face recognition & Neural style transfer</a></li>
<li class="list-group-item"><a class="btn btn-primary" href='https://x-wei.github.io/Ng_DLMooc_c5wk1.html' style="text-align:left">[Sequential Models] week1. Recurrent Neural Networks</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c5wk2.html' style="text-align:left">[Sequential Models] week2. Natural Language Processing & Word Embeddings</a></li>
<li class="list-group-item"><a class="btn btn-default" href='https://x-wei.github.io/Ng_DLMooc_c5wk3.html' style="text-align:left">[Sequential Models] week3. Sequence models & Attention mechanism</a></li>
</ul>
</div>
<section class="comments" id="comments">
<div class="panel-group" id="accordion" role="tablist" aria-multiselectable="true">
<div class="panel panel-primary">
<div class="panel-heading" role="tab" id="disqus-heading">
<h4 class="panel-title">
<a data-toggle="collapse" data-parent="#accordion" href="#disqus-comments" aria-expanded="true" aria-controls="disqus-comments">
<i class="fa fa-comments-o"></i> Disqus 留言
</a>
</h4>
</div>
<div id="disqus-comments" class="panel-collapse collapse.show" role="tabpanel" aria-labelledby="disqus-heading">
<div class="panel-body">
<div class="tab-pane fade active in" id="disqus-comments">
<div id="disqus_thread"></div>
<script type="text/javascript">
/* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
var disqus_shortname = 'xweisblog'; // required: replace example with your forum shortname
var disqus_identifier = 'Ng_DLMooc_c5wk1';
var disqus_url = 'https://x-wei.github.io/Ng_DLMooc_c5wk1.html';
var disqus_config = function () {
this.language = "zh";
};
/* * * DON'T EDIT BELOW THIS LINE * * */
(function () {
var dsq = document.createElement('script');
dsq.type = 'text/javascript';
dsq.async = true;
dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
})();
</script>
<noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by
Disqus.</a></noscript>
<a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
</div>
</div>
</div>
</div>
</div>
</section> </article>
</section>
</div>
<!-- Modal -->
<div class="modal fade" id="myModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true">
<div class="modal-dialog modal-lg">
<div class="modal-content">
<a data-dismiss="modal" href="javascript:void(0);">
<img id="mimg" src="" style="width:100%;height:auto">
</a>
</div>
</div><!-- /.modal-dialog -->
</div><!-- /.modal -->
</div>
<div class="col-xl-3 col-lg-4 col-md-6" id="sidebar">
<aside>
<section>
<div class="sidebar-container">
<div class="sidebar-item ">
<div class="panel panel-default">
<div class="panel-heading">
<h4>
<i class="fa fa-user fa-lg"></i>
<a href="https://x-wei.github.io/about.html">
关于 mx
</a>
</h4>
</div>
<div class="panel-body" id="aboutme">
<a href="https://x-wei.github.io/about.html"><img width="100%" src="https://x-wei.github.io/../images/mx.jpg"/></a>
<h3 style="text-align:center">
<a href="https://github.com/x-wei" target="_blank">
<i class="fa fa-github" style="text-align:center"></i></a>
<a href="https://weibo.com/u/1817154611" target="_blank">
<i class="fa fa-weibo" style="text-align:center"></i></a>
<a href="mailto:[email protected]" target="_blank">
<i class="mdi-communication-email" style="text-align:center"></i></a>
</h3>
<h4 class="widget-title">推荐文章</h4>
<div class="textwidget">
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/TeXmacs_intro.html">学术文章写作利器: TeXmacs介绍</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/hashcode2014-solved-by-LP.html">运筹的力量: 用线性规划解决Google 2014 HashCode问题</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/%E6%AD%A3%E5%88%99%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%85%A5%E9%97%A8%E7%AE%80%E4%BB%8B.html">正则表达式入门简介</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/%E6%88%91%E7%9A%84ubuntu10.04%E9%85%8D%E7%BD%AE%E6%80%BB%E7%BB%93.html">我的ubuntu10.04配置总结</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/PT-summery.html">2011巴黎高科(ParisTech)申请总结</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/GT-summery.html">用尽量少的时间考一个够用的分数--一点Tofel/GRE备考经验</a><br></li>
<li class="widget-container widget_text">
<a href="https://x-wei.github.io/pelican_github_blog.html">用pelican在github上创建自己的博客!</a><br></li>
</div>
<br><a href="https://www.polytechnique.edu/" target="_blank">
<img src="https://x-wei.github.io/images/x-logo.png" alt="X" width="180" border="0" />
</a><br/>
<br><a href="https://www.sjtu.edu.cn/">
<img src="https://x-wei.github.io/images/ssss.jpg" width="180" border="0" alt="上海西南某高校">
</a><br/>
<br>
<h4 class="widget-title">Visitors</h4>
<script type="text/javascript" src="//rf.revolvermaps.com/0/0/1.js?i=59olkba9w7e&s=220&m=3&v=true&r=false&b=000000&n=false&c=ff0000" async="async"></script>
<!-- hitwebcounter Code START -->
<a href="https://www.hitwebcounter.com/how-to/how-to-what-is-free-blog-counter.php" target="_blank">
<img src="https://hitwebcounter.com/counter/counter.php?page=5954927&style=0036&nbdigits=5&type=ip&initCount=0" title="web counter" Alt="web counter" border="0" ></a>
<br/>
</div>
</div>
</div>
<div class="sidebar-item ">
<div class="panel panel-default">
<div class="panel-heading">
<h4>
<a href="https://x-wei.github.io/tags.html"><i class="fa fa-tags fa-lg"></i><span class="icon-label">标签云</span></a>
</h4>
</div>
<div class="panel-body">
<ul class="list-group list-inline tagcloud" id="tags">
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/pelican.html">
pelican <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/google.html">
google <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/torch.html">
torch <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/tex.html">
tex <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/ba-li-gao-ke.html">
巴黎高科 <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/markdown.html">
markdown <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/linux.html">
linux <sup> 3</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/inf422.html">
inf422 <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/toefl.html">
Toefl <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/regex.html">
regex <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/git.html">
git <sup> 5</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/weka.html">
weka <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/scala.html">
scala <sup> 12</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/opencv.html">
opencv <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/scrapy.html">
scrapy <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/gre.html">
GRE <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/lp.html">
LP <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/android.html">
android <sup> 9</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/pandas.html">
pandas <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/codejam.html">
codejam <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/fr.html">
fr <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/shell.html">
shell <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/python.html">
python <sup> 13</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/simongarfunkel.html">
Simon&Garfunkel <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/french.html">
french <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/wai-guan.html">
外观 <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/zhong-wen-luan-ma.html">
中文乱码 <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/host.html">
host <sup> 3</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/ssh.html">
ssh <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/ubuntu.html">
ubuntu <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/java.html">
java <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/spark.html">
spark <sup> 6</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/tips.html">
tips <sup> 3</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/deep-learning.html">
deep learning <sup> 28</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/c.html">
C++ <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-1">
<a href="https://x-wei.github.io/tag/algorithm.html">
algorithm <sup> 35</sup>
</a>
</li>
<li class="list-group-item tag-4">
<a href="https://x-wei.github.io/tag/texmacs.html">
TeXmacs <sup> 1</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/ml.html">
ml <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/eclipse.html">
eclipse <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/ocaml.html">
OCaml <sup> 8</sup>
</a>
</li>
<li class="list-group-item tag-2">
<a href="https://x-wei.github.io/tag/r.html">
R <sup> 4</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/chu-guo.html">
出国 <sup> 2</sup>
</a>
</li>
<li class="list-group-item tag-3">
<a href="https://x-wei.github.io/tag/kuai-jie-jian.html">
快捷键 <sup> 3</sup>
</a>
</li>
</ul>
</div>
</div>
</div>
<li class="list-group-item"><h4><i class="fa fa-tags fa-list-ul"></i><span class="icon-label">Series</span></h4>
<ul class="list-group">
<li class="list-group-item">
<h5></i> Previous article</h5>
<a href="https://x-wei.github.io/Ng_DLMooc_c4wk4.html">[Convolutional Neural Networks] week4. Special applications: Face recognition & Neural style transfer</a>
</li>
<li class="list-group-item">
<h5>Next article</h5>
<a href="https://x-wei.github.io/Ng_DLMooc_c5wk2.html">[Sequential Models] week2. Natural Language Processing & Word Embeddings</a>
</li>
</ul>
</li>
<div class="sidebar-item hidden-xs">
<div class="panel panel-default">
<div class="panel-heading">
<h4>
<i class="fa fa-github fa-lg"></i><span class="icon-label">GitHub仓库</span>
</h4>
</div>
<div class="panel-body">
<div id="gh_repos">
<p class="list-group-item">Status updating...</p>
</div>
<a href="https://github.com/x-wei">@x-wei</a> on GitHub
</div>
</div>
</div>
</div>
</section>
<div class="panel panel-default hidden-xs hidden-sm" id="affix-toc">
<div class="panel-heading"><h4>
目录</h4>
</div>
<div class="panel-boy">
<div id="toc"><ul><li><a class="toc-href" href="#week1" title="week1">week1</a><ul><li><a class="toc-href" href="#why-sequence-models" title="Why sequence models">Why sequence models</a></li><li><a class="toc-href" href="#notation" title="Notation">Notation</a></li><li><a class="toc-href" href="#recurrent-neural-network-model" title="Recurrent Neural Network Model">Recurrent Neural Network Model</a><ul><li><a class="toc-href" href="#rnn" title="RNN">RNN</a></li><li><a class="toc-href" href="#rnn-forward-prop" title="RNN Forward prop">RNN Forward prop</a></li></ul></li><li><a class="toc-href" href="#backpropagation-through-time_1" title="Backpropagation through time">Backpropagation through time</a></li><li><a class="toc-href" href="#different-types-of-rnns" title="Different types of RNNs">Different types of RNNs</a></li><li><a class="toc-href" href="#language-model-and-sequence-generation" title="Language model and sequence generation">Language model and sequence generation</a></li><li><a class="toc-href" href="#sampling-novel-sequences" title="Sampling novel sequences">Sampling novel sequences</a></li><li><a class="toc-href" href="#vanishing-gradients-with-rnns" title="Vanishing gradients with RNNs">Vanishing gradients with RNNs</a></li><li><a class="toc-href" href="#gated-recurrent-unit-gru" title="Gated Recurrent Unit (GRU)">Gated Recurrent Unit (GRU)</a></li><li><a class="toc-href" href="#long-short-term-memory-lstm" title="Long Short Term Memory (LSTM)">Long Short Term Memory (LSTM)</a></li><li><a class="toc-href" href="#bidirectional-rnn" title="Bidirectional RNN">Bidirectional RNN</a></li><li><a class="toc-href" href="#deep-rnns" title="Deep RNNs">Deep RNNs</a></li></ul></li></ul></div>
</div>
</div>
</aside>
</div>
</div>
</div>
<footer id="fcfooter">
<hr/>
<div class="container">
links :
<a href="https://farseerfc.github.com/">farseerfc</a>
<a href="https://hyhx2008.github.com/">H.Y.</a>
<a href="https://reginald1787.github.io/">reginald1787</a>
<a href="https://log.dofine.me/">dofine</a>
<div class="row">
<div class="col-md-14">
<p><small>
© 2020 mx
· 通过
<a href="https://docs.getpelican.com/" target="_blank">Pelican</a> 生成 <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="//i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a>
<!-- Content -->
<!-- licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution 4.0 International License</a>, except where indicated otherwise. -->
</small></p>
</div>
</div>
</div>
<a href="#" class="btn btn-primary btn-fab btn-raised mdi-editor-vertical-align-top withripple" style="position:fixed;bottom:30px;right:30px;z-index:1000"></a>
</footer>
<script src="https://x-wei.github.io/theme/js/jquery.min.js"></script>
<!-- Include all compiled plugins (below), or include individual files as needed -->
<script src="https://x-wei.github.io/theme/js/bootstrap.min.js"></script>
<!-- Enable responsive features in IE8 with Respond.js (https://github.com/scottjehl/Respond) -->
<script src="https://x-wei.github.io/theme/js/respond.min.js"></script>
<!-- GitHub JS -->
<script type="text/javascript">
$(document).ready(function () {
if (!window.jXHR) {
var jxhr = document.createElement('script');
jxhr.type = 'text/javascript';
jxhr.src = 'https://x-wei.github.io/theme/js/jXHR.js';
var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(jxhr, s);
}
github.showRepos({
user: 'x-wei',
count: 5,
skip_forks: false,
target: '#gh_repos'
});
});
</script>
<script src="https://x-wei.github.io/theme/js/github.js" type="text/javascript"></script>
<!-- End GitHub JS Code -->
<!-- Disqus -->
<script type="text/javascript">
/* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
var disqus_shortname = 'xweisblog'; // required: replace example with your forum shortname
/* * * DON'T EDIT BELOW THIS LINE * * */
(function () {
var s = document.createElement('script');
s.async = true;
s.type = 'text/javascript';
s.src = '//' + disqus_shortname + '.disqus.com/count.js';
(document.getElementsByTagName('HEAD')[0] || document.getElementsByTagName('BODY')[0]).appendChild(s);
}());
</script>
<!-- End Disqus Code -->
<!-- Google Analytics -->
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-30756331-1']);
_gaq.push(['_trackPageview']);
(function () {
var ga = document.createElement('script');
ga.type = 'text/javascript';
ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(ga, s);
})();
</script>
<!-- End Google Analytics Code -->
<script src="https://x-wei.github.io/theme/js/ripples.min.js"></script>
<script src="https://x-wei.github.io/theme/js/material.min.js"></script>
<script src="https://x-wei.github.io/theme/js/jquery.bootstrap-autohidingnavbar.min.js"></script>
<script>
$(document).ready(function() {
$.material.init();
$("div.navbar").autoHidingNavbar();
$(".img-responsive").css("cursor","pointer").on('click',function(){
var sr=$(this).attr('src');
$('#mimg').attr('src',sr);
$('#myModal').modal('show');
});
$('#affix-toc').affix({
offset: {
top: function(){
if($('#affix-toc').hasClass("affix"))
return $('#sidebar').height();
return $('#sidebar').height() - $('#affix-toc').height();
},
bottom: function (){
return $("#fcfooter").offset().top -
$("#article-content").offset().top -
$("#article-content").height() + 20;
}
}
});
$('#affix-toc').width($('#sidebar').width());
});
$(window).resize(function () {
$('#affix-toc').width($('#sidebar').width());
});
</script>
</body>
</html>