Skip to content

Latest commit

 

History

History
149 lines (111 loc) · 5.6 KB

README.md

File metadata and controls

149 lines (111 loc) · 5.6 KB

Open-Sora Plan

[Project Page] [中文主页]

This project aims to create a simple and scalable repo, to reproduce Sora (OpenAI, but we prefer to call it "CloseAI" ) and build knowledge about Video-VQVAE (VideoGPT) + DiT at scale. However, we have limited resources, we deeply wish all open-source community can contribute to this project. Pull request are welcome!!!

本项目希望通过开源社区的力量复现Sora,由北大-兔展AIGC联合实验室共同发起,当前我们资源有限仅搭建了基础架构,无法进行完整训练,希望通过开源社区逐步增加模块并筹集资源进行训练,当前版本离目标差距巨大,仍需持续完善和快速迭代,欢迎Pull request!!!

The architecture of Open-Sora-Plan

News

[2024.03.01] Training codes are available now! Learn more in our project page. Please feel free to watch 👀 this repository for the latest updates.

Todo

  • support variable aspect ratios, resolutions, durations training on DiT

  • dynamic mask input

  • add class-conditioning on embeddings

  • sampling script

  • add positional interpolation

  • fine-tune Video-VQVAE on higher resolution

  • incorporating SiT

  • incorporating more conditions

  • training with more data and more GPU

Requirements and Installation

The recommended requirements are as follows.

  • Python >= 3.8
  • Pytorch >= 1.13.1
  • CUDA Version >= 11.7
  • Install required packages:
git clone https://github.com/PKU-YuanGroup/Open-Sora-Plan
cd Open-Sora-Plan
conda create -n opensora python=3.8 -y
conda activate opensora
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
cd VideoGPT
pip install -e .
cd ..

Usage

Datasets

We test the code with UCF-101 dataset. In order to download UCF-101 dataset, you can download the necessary files in here. The code assumes a ucf101 directory with the following structure

UCF-101/
    ApplyEyeMakeup/
        v1.avi
        ...
    ...
    YoYo/
        v1.avi
        ...

Video-VQVAE (VideoGPT)

Training

Refer to origin repo. Use the scripts/train_vqvae.py script to train a Video-VQVAE. Execute python scripts/train_vqvae.py -h for information on all available training settings. A subset of more relevant settings are listed below, along with default values.

cd VideoGPT
VQ-VAE Specific Settings
  • --embedding_dim: number of dimensions for codebooks embeddings
  • --n_codes 2048: number of codes in the codebook
  • --n_hiddens 240: number of hidden features in the residual blocks
  • --n_res_layers 4: number of residual blocks
  • --downsample 4 4 4: T H W downsampling stride of the encoder
Training Settings
  • --gpus 2: number of gpus for distributed training
  • --sync_batchnorm: uses SyncBatchNorm instead of BatchNorm3d when using > 1 gpu
  • --gradient_clip_val 1: gradient clipping threshold for training
  • --batch_size 16: batch size per gpu
  • --num_workers 8: number of workers for each DataLoader
Dataset Settings
  • --data_path <path>: path to an hdf5 file or a folder containing train and test folders with subdirectories of videos
  • --resolution 128: spatial resolution to train on
  • --sequence_length 16: temporal resolution, or video clip length

Reconstructing

python VideoGPT/rec_video.py --video-path "assets/origin_video_0.mp4" --rec-path "rec_video_0.mp4" --num-frames 500 --sample-rate 1
python VideoGPT/rec_video.py --video-path "assets/origin_video_1.mp4" --rec-path "rec_video_1.mp4" --resolution 196 --num-frames 600 --sample-rate 1

We present four reconstructed videos in this demonstration, arranged from left to right as follows:

3s 596x336 10s 256x256 18s 196x196 24s 168x96

VideoDiT (DiT)

Training

cd DiT
torchrun  --nproc_per_node=8 train.py \
  --model DiT-XL/122 --pt-ckpt DiT-XL-2-256x256.pt \
  --vae ucf101_stride4x4x4 \
  --data-path /remote-home/yeyang/UCF-101 --num-classes 101 \
  --sample-rate 2 --num-frames 8 --max-image-size 128 \
  --epochs 1400 --global-batch-size 256 --lr 1e-4 \
  --ckpt-every 1000 --log-every 1000 

Sampling

Coming soon.

Acknowledgement

  • DiT: Scalable Diffusion Models with Transformers.
  • VideoGPT: Video Generation using VQ-VAE and Transformers.
  • FiT: Flexible Vision Transformer for Diffusion Model.
  • Positional Interpolation: Extending Context Window of Large Language Models via Positional Interpolation.

License

  • The service is a research preview intended for non-commercial use only. See LICENSE.txt for details.

Contributors