-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_unilm.py
executable file
·490 lines (416 loc) · 18.2 KB
/
train_unilm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
import sys
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
import random
import torch
from datasets import load_metric
import transformers
from accelerate import Accelerator
from filelock import FileLock
from transformers import (
DataCollatorForTokenClassification,
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
HfArgumentParser,
Seq2SeqTrainingArguments,
get_scheduler,
default_data_collator,
)
from transformers.file_utils import is_offline_mode
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
from model.local_trainer_ls import Seq2SeqTrainer
from model.utils import ModelArguments,DataTrainingArguments
from model.local_bart_ls import BartForConditionalGeneration
from model.local_data_collator import DataCollatorForSeq2Seq
from datasets import Dataset
import jsonlines
from transformers import BartConfig,PreTrainedTokenizerFast,BartTokenizer
from torch.utils.data.dataloader import DataLoader
import argparse
# parser = argparse.ArgumentParser(description='Process args.')
# parser.add_argument('--outdir', type=str, required=True)
# args = parser.parse_args()
# outdir= args.outdir
# print (outdir)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.4.0.dev0")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
}
alpha=0.01
# model_name='linydub/bart-large-samsum'
# model_name = 'jackieliu930/bart-large-cnn-samsum'
# model_name = 'lidiya/bart-large-xsum-samsum'
# model_name = 'philschmid/distilbart-cnn-12-6-samsum'
# model_name = 'Salesforce/bart-large-xsum-samsum'
# outdir='output-' + model_name.split('/')[1] + '-large-epoch-2'
model_name = 'lidiya/bart-base-samsum'
# model_name = 'facebook/bart-large'
outdir = 'output-' + model_name.split('/')[1] + '-baseline'
if not os.path.exists(outdir):
os.mkdir(outdir)
dirs=os.listdir(outdir)
dir_idx=len(dirs)+1
dir_idx=1
print(dir_idx)
seed=str(dir_idx*1000)
args=[
# '--model_name_or_path','facebook/bart-large',
# '--model_name_or_path','lidiya/bart-base-samsum',
'--model_name_or_path',model_name,
'--do_predict',
# '--do_train','--do_eval','--do_predict',
# '--do_train','--do_predict',
'--train_file','data/train.json',
'--validation_file','data/val.json',
'--test_file','data/test.json',
'--output_dir',outdir+'/'+str(dir_idx),
'--per_device_train_batch_size=4',
'--per_device_eval_batch_size=4',
'--overwrite_output_dir',
'--predict_with_generate=1',
'--seed',seed,
'--num_train_epochs','3',
'--save_strategy','epoch',
'--evaluation_strategy','epoch',
'--learning_rate','1e-5',
'--gradient_accumulation_steps=2',
'--label_smoothing_factor=0.1',
'--load_best_model_at_end',
'--metric_for_best_model','eval_rouge1',
]
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses(args)
# data_args.max_source_length = 512
# data_args.max_target_length = 90
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(training_args.seed)
training_args.remove_unused_columns=False
if 1:
last_checkpoint=None
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
def load_jsonl(file_path):
import itertools
import json
with jsonlines.open(file_path, "r") as rfd:
result={}
keys=['dialogue','summary','utterances']
for key in keys:
result[key]=[]
for data in rfd:
text=data['dialogue']
text=list(map(lambda x:x.strip().split(' '),text))
utterance_dic={}
total_words=0
for utterance in text:
name=utterance[0]
addi_len=0
if ":" not in name:
if utterance[1][-1]==':':
name=utterance[0]+utterance[1]
addi_len=1
elif utterance[2][-1]==':':
name=utterance[0]+utterance[1]+utterance[2]
addi_len=2
if len(utterance)>addi_len+1:
if name not in utterance_dic.keys():
utterance_dic[name]=[]
utterance_dic[name].append((total_words+1+addi_len,total_words+len(utterance)-1))
else:
print(utterance)
pass
total_words+=len(utterance)
text=list(itertools.chain(*text))
assert(len(text)==total_words)
summary=data['summary']
summary=list(map(lambda x:x.split(' '),summary))
summary=list(itertools.chain(*summary))
result['summary'].append(summary)
result['dialogue'].append(text)
result['utterances'].append(json.dumps(utterance_dic))
return result
datasets={}
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file+'l'
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file+'l'
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file+'l'
extension = data_args.test_file.split(".")[-1]
for key in data_files:
print(key)
dic=load_jsonl(data_files[key])
datasets[key]=Dataset.from_dict(dic)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config=BartConfig.from_pretrained(model_args.model_name_or_path)
model=BartForConditionalGeneration.from_pretrained(model_args.model_name_or_path)
model.alpha=alpha
print(model.alpha)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
#split into word
add_prefix_space=True,
)
if 1:
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
text_column='dialogue'
summary_column='summary'
label_column='utterances'
column_names = datasets["train"].column_names
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warn(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[summary_column]
MYlabels = examples[label_column]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True,is_split_into_words=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True,is_split_into_words=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
def find_head(l,x):
return l.index(x)
def find_tail(l,x):
return len(l)-l[::-1].index(x)-1
MYlabels_input=[]
import json
for i, label in enumerate(MYlabels):
label=json.loads(label)
word_ids = model_inputs.word_ids(batch_index=i)
the_last=word_ids[-2]
utterance={}
for key in label.keys():
utterance[key]=[]
for span in label[key]:
if span[1]>the_last:
print(len(word_ids))
break
utterance[key].append([find_head(word_ids,span[0]),find_tail(word_ids,span[1])])
MYlabels_input.append(json.dumps(utterance))
model_inputs['speaker_label']=MYlabels_input
return model_inputs
if 1:
if training_args.do_train:
train_dataset = datasets["train"]
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = datasets["test"]
if data_args.max_test_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_test_samples))
test_dataset = test_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Metric
metric = load_metric("rouge", cache_dir="./my_cache")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results from ROUGE
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
# train_dataset.cleanup_cache_files()
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=None)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if training_args.do_predict:
logger.info("*** Test ***")
test_results = trainer.predict(
test_dataset,
metric_key_prefix="test",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
metrics = test_results.metrics
max_test_samples = data_args.max_test_samples if data_args.max_test_samples is not None else len(test_dataset)
metrics["test_samples"] = min(max_test_samples, len(test_dataset))
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
test_preds = tokenizer.batch_decode(
test_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
test_preds = [pred.strip() for pred in test_preds]
output_test_preds_file = os.path.join(training_args.output_dir, "test_generations.txt")
with open(output_test_preds_file, "w",encoding='UTF-8') as writer:
writer.write("\n".join(test_preds))
print(model.alpha)
torch.save(model.total_speaker_loss,'total_speaker_loss')
torch.save(model.total_summary_loss,'total_summary_loss')
torch.save(model.total_loss,'total_loss')