-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_fer2013_confusion_matrix.py
135 lines (111 loc) · 4.34 KB
/
plot_fer2013_confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
plot confusion_matrix of PublicTest and PrivateTest
"""
import itertools
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import argparse
from fer import FER2013
from torch.autograd import Variable
import torchvision.transforms as transforms
from sklearn.metrics import confusion_matrix
from models import *
def to_tensor_stack(crops):
return torch.stack([transforms.ToTensor()(crop) for crop in crops])
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=16)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label', fontsize=18)
plt.xlabel('Predicted label', fontsize=18)
plt.tight_layout()
def main():
parser = argparse.ArgumentParser(description='PyTorch Fer2013 CNN Training')
parser.add_argument('--model', type=str, default='Resnet18', help='CNN architecture')
parser.add_argument('--dataset', type=str, default='FER2013', help='CNN architecture')
parser.add_argument('--split', type=str, default='PrivateTest', help='split')
opt = parser.parse_args()
cut_size = 44
transform_test = transforms.Compose([
transforms.TenCrop(cut_size),
transforms.Lambda(to_tensor_stack),
])
class_names = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
# Model
if opt.model == 'VGG19':
net = VGG('VGG19')
elif opt.model == 'Resnet18':
net = ResNet18()
path = os.path.join(opt.dataset + '_' + opt.model)
split = opt.split
modelPath = os.path.join(path, split + '_model_classify.t7')
checkpoint = torch.load(modelPath)
net.load_state_dict(checkpoint['net'])
net.cuda()
net.eval()
Testset = FER2013(split=opt.split, transform=transform_test)
Testloader = torch.utils.data.DataLoader(Testset, batch_size=16, shuffle=False, num_workers=1)
# Debug: Print one batch
for batch in Testloader:
print(batch)
break
correct = 0
total = 0
all_target = []
for batch_idx, batch in enumerate(Testloader):
inputs, targets = batch[:2] # Unpack the first two elements
bs, ncrops, c, h, w = np.shape(inputs)
inputs = inputs.view(-1, c, h, w)
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops
_, predicted = torch.max(outputs_avg.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
if batch_idx == 0:
all_predicted = predicted
all_targets = targets
else:
all_predicted = torch.cat((all_predicted, predicted), 0)
all_targets = torch.cat((all_targets, targets), 0)
acc = 100. * correct / total
print("accuracy: %0.3f" % acc)
# Compute confusion matrix
matrix = confusion_matrix(all_targets.data.cpu().numpy(), all_predicted.cpu().numpy())
np.set_printoptions(precision=2)
# Plot normalized confusion matrix
plt.figure(figsize=(10, 8))
plot_confusion_matrix(matrix, classes=class_names, normalize=True,
title=opt.split + ' Confusion Matrix (Accuracy: %0.3f%%)' % acc)
plt.savefig(os.path.join(path, opt.split + '_cm.png'))
plt.close()
if __name__ == '__main__':
torch.multiprocessing.freeze_support()
main()