-
Notifications
You must be signed in to change notification settings - Fork 0
/
MBConv.py
178 lines (147 loc) · 6.62 KB
/
MBConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import math
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_variables[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
def drop_connect(inputs, p, training):
""" Drop connect. """
if not training: return inputs
batch_size = inputs.shape[0]
keep_prob = 1 - p
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
binary_tensor = torch.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def get_same_padding_conv2d(image_size=None):
return partial(Conv2dStaticSamePadding, image_size=image_size)
def get_width_and_height_from_size(x):
""" Obtains width and height from a int or tuple """
if isinstance(x, int): return x, x
if isinstance(x, list) or isinstance(x, tuple): return x
else: raise TypeError()
def calculate_output_image_size(input_image_size, stride):
"""
计算出 Conv2dSamePadding with a stride.
"""
if input_image_size is None: return None
image_height, image_width = get_width_and_height_from_size(input_image_size)
stride = stride if isinstance(stride, int) else stride[0]
image_height = int(math.ceil(image_height / stride))
image_width = int(math.ceil(image_width / stride))
return [image_height, image_width]
class Conv2dStaticSamePadding(nn.Conv2d):
""" 2D Convolutions like TensorFlow, for a fixed image size"""
def __init__(self, in_channels, out_channels, kernel_size, image_size=None, **kwargs):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
# Calculate padding based on image size and save it
assert image_size is not None
ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
else:
self.static_padding = Identity()
def forward(self, x):
x = self.static_padding(x)
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
return x
class Identity(nn.Module):
def __init__(self, ):
super(Identity, self).__init__()
def forward(self, input):
return input
# MBConvBlock
class MBConvBlock(nn.Module):
'''
层 ksize3*3 输入32 输出16 conv1 stride步长1
'''
def __init__(self, ksize, input_filters, output_filters, expand_ratio=1, stride=1, image_size=224):
super().__init__()
self._bn_mom = 0.1
self._bn_eps = 0.01
self._se_ratio = 0.25
self._input_filters = input_filters
self._output_filters = output_filters
self._expand_ratio = expand_ratio
self._kernel_size = ksize
self._stride = stride
inp = self._input_filters
oup = self._input_filters * self._expand_ratio
if self._expand_ratio != 1:
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Depthwise convolution
k = self._kernel_size
s = self._stride
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._depthwise_conv = Conv2d(
in_channels=oup, out_channels=oup, groups=oup,
kernel_size=k, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
image_size = calculate_output_image_size(image_size, s)
# Squeeze and Excitation layer, if desired
Conv2d = get_same_padding_conv2d(image_size=(1,1))
num_squeezed_channels = max(1, int(self._input_filters * self._se_ratio))
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
final_oup = self._output_filters
Conv2d = get_same_padding_conv2d(image_size=image_size)
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
self._swish = MemoryEfficientSwish()
def forward(self, inputs, drop_connect_rate=None):
"""
:param inputs: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
x = inputs
if self._expand_ratio != 1:
expand = self._expand_conv(inputs)
bn0 = self._bn0(expand)
x = self._swish(bn0)
depthwise = self._depthwise_conv(x)
bn1 = self._bn1(depthwise)
x = self._swish(bn1)
# Squeeze and Excitation
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_reduce(x_squeezed)
x_squeezed = self._swish(x_squeezed)
x_squeezed = self._se_expand(x_squeezed)
x = torch.sigmoid(x_squeezed) * x
x = self._bn2(self._project_conv(x))
# Skip connection and drop connect
input_filters, output_filters = self._input_filters, self._output_filters
if self._stride == 1 and input_filters == output_filters:
if drop_connect_rate:
x = drop_connect(x, p=drop_connect_rate, training=self.training)
x = x + inputs # skip connection
return x
if __name__ == '__main__':
input=torch.randn(1,3,112,112)
mbconv=MBConvBlock(ksize=3,input_filters=3,output_filters=3,image_size=112)
out=mbconv(input)
print(out.shape)