forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
52 lines (49 loc) · 1.69 KB
/
swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
_base_ = [
'../_base_/models/upernet_swin.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
crop_size = (512, 512)
data_preprocessor = dict(size=crop_size)
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_tiny_patch4_window7_224_20220317-1cdeb081.pth' # noqa
model = dict(
data_preprocessor=data_preprocessor,
backbone=dict(
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file),
embed_dims=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
use_abs_pos_embed=False,
drop_path_rate=0.3,
patch_norm=True),
decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=150),
auxiliary_head=dict(in_channels=384, num_classes=150))
# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
optim_wrapper = dict(
_delete_=True,
type='OptimWrapper',
optimizer=dict(
type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01),
paramwise_cfg=dict(
custom_keys={
'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}))
param_scheduler = [
dict(
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
dict(
type='PolyLR',
eta_min=0.0,
power=1.0,
begin=1500,
end=160000,
by_epoch=False,
)
]
# By default, models are trained on 8 GPUs with 2 images per GPU
train_dataloader = dict(batch_size=2)
val_dataloader = dict(batch_size=1)
test_dataloader = val_dataloader