forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
swin-tiny-patch4-window7_upernet_1xb8-20k_levir-256x256.py
57 lines (53 loc) · 1.66 KB
/
swin-tiny-patch4-window7_upernet_1xb8-20k_levir-256x256.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
_base_ = [
'../_base_/models/upernet_swin.py', '../_base_/datasets/levir_256x256.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
]
crop_size = (256, 256)
norm_cfg = dict(type='BN', requires_grad=True)
data_preprocessor = dict(
size=crop_size,
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53, 123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375, 58.395, 57.12, 57.375],
bgr_to_rgb=False)
model = dict(
data_preprocessor=data_preprocessor,
backbone=dict(
in_channels=6,
embed_dims=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
use_abs_pos_embed=False,
drop_path_rate=0.3,
patch_norm=True),
decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=2),
auxiliary_head=dict(in_channels=384, num_classes=2))
# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
optim_wrapper = dict(
_delete_=True,
type='OptimWrapper',
optimizer=dict(
type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01),
paramwise_cfg=dict(
custom_keys={
'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}))
param_scheduler = [
dict(
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
dict(
type='PolyLR',
eta_min=0.0,
power=1.0,
begin=1500,
end=20000,
by_epoch=False,
)
]
train_dataloader = dict(batch_size=4)
val_dataloader = dict(batch_size=1)
test_dataloader = val_dataloader