-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
222 lines (185 loc) · 7.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from mqbench.convert_deploy import convert_deploy
from mqbench.prepare_by_platform import prepare_qat_fx_by_platform, BackendType
from mqbench.utils.state import enable_calibration, enable_quantization
from torch.nn.parallel import DistributedDataParallel as DDP
import os
import argparse
from models import *
from utils import progress_bar, choose_model, choose_backend
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
train_loss = 0
correct = 0
total = 0
if args.quantize:
net.eval()
enable_calibration(net)
calibration_flag = True
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
if args.quantize:
if calibration_flag:
if batch_idx >= 0:
calibration_flag = False
net.zero_grad()
net.train()
enable_quantization(net)
else:
continue
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
# print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
print("============== eval ==================")
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
#if True:
if acc > best_acc:
if isinstance(net, (nn.DataParallel, nn.parallel.DistributedDataParallel)):
state = {
'net': net.module.state_dict(),
'acc': acc,
'epoch': epoch,
}
else:
print("no")
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
if args.quantize:
torch.save(state, './checkpoint/' + args.model + '_ckpt_q.pth')
print('Saved in ./checkpoint/' + args.model + '_ckpt_q.pth')
else:
torch.save(state, './checkpoint/' + args.model + '_ckpt.pth')
print('Saved in ./checkpoint/' + args.model + '_ckpt.pth')
best_acc = acc
parser = argparse.ArgumentParser(description='PyTorch MQBench Quantization Aware Training')
parser.add_argument('model', type=str,
help='network model type: see detail in folder ''models'' ')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument("--quantize", '-q', action='store_true',
help='fp32 train or low_bit QAT, -q means low_bit QAT')
parser.add_argument("--parallel", '-p', default = None ,type=str,
help='choose DP or DDP')
parser.add_argument("--BackendType", '-BT', default = 'Tensorrt' ,type=str,
help='choose device to deploy')
parser.add_argument("--local_rank", type=int,
help='When there is a host slave situation in DDP,\
the host is local_ rank = 0')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = choose_model(args)
# net = VGG('VGG19')
# net = ResNet18()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
# net = ShuffleNetV2(1)
# net = EfficientNetB0()
# net = RegNetX_200MF()
# net = SimpleDLA()
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/'+ args.model +'_ckpt.pth')
net.load_state_dict(checkpoint['net'])
if not args.quantize:
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
if args.quantize:
net.train()
backend = choose_backend(args)
net = prepare_qat_fx_by_platform(net, backend)
#assert False
net = net.to(device)
if device == 'cuda' and torch.cuda.device_count() > 1 and args.parallel == 'DP':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if device == 'cuda' and torch.cuda.device_count() > 1 and args.parallel == 'DDP':
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='tcp://localhost:23456', rank=0, world_size=1)
net = DDP(net, find_unused_parameters=True)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)
scheduler.step()