forked from mbodiai/embodied-agents
-
Notifications
You must be signed in to change notification settings - Fork 0
/
auto_agent.py
160 lines (132 loc) · 6.16 KB
/
auto_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from functools import wraps
from typing import Any, Dict, Literal, Type
from mbodied.agents import Agent
from mbodied.agents.language import LanguageAgent
from mbodied.agents.motion.openvla_agent import OpenVlaAgent
from mbodied.agents.sense.depth_estimation_agent import DepthEstimationAgent
from mbodied.agents.sense.object_detection_agent import ObjectDetectionAgent
from mbodied.agents.sense.segmentation_agent import SegmentationAgent
from mbodied.types.sense.vision import Image
class AutoAgent(Agent):
"""AutoAgent that dynamically selects and initializes the correct agent based on the task and model.
Example Usage:
```python
# AutoAgent as LanguageAgent:
auto_agent = AutoAgent(task="language", model_src="openai")
response = auto_agent.act("What is the capital of France?")
# AutoAgent as MotorAgent:
auto_agent = AutoAgent(task="motion-openvla", model_src="https://api.mbodi.ai/community-models/")
action = auto_agent.act("move hand forward", Image(size=(224, 224)))
# AutoAgent as SenseAgent:
auto_agent = AutoAgent(task="sense-depth-estimation", model_src="https://api.mbodi.ai/sense/")
depth = auto_agent.act(image=Image("resources/bridge_example.jpeg", size=(224, 224)))
```
"""
TASK_TO_AGENT_MAP: Dict[
Literal[
"language", "motion-openvla", "sense-object-detection", "sense-image-segmentation", "sense-depth-estimation"
],
Type[Agent],
] = {
"language": LanguageAgent,
"motion-openvla": OpenVlaAgent,
"sense-object-detection": ObjectDetectionAgent,
"sense-image-segmentation": SegmentationAgent,
"sense-depth-estimation": DepthEstimationAgent,
}
def __init__(
self, task: str | None = None, model_src: str | None = None, model_kwargs: Dict | None = None, **kwargs
):
"""Initialize the AutoAgent with the specified task and model."""
if model_kwargs is None:
model_kwargs = {}
self.task = task
self.model_src = model_src
self.model_kwargs = model_kwargs
self.kwargs = kwargs
self._initialize_agent()
def _initialize_agent(self):
"""Initialize the appropriate agent based on the task."""
if self.task not in self.TASK_TO_AGENT_MAP:
if self.model_src is None:
self.model_src = "openai"
self.agent = LanguageAgent(model_src=self.model_src, model_kwargs=self.model_kwargs, **self.kwargs)
else:
self.agent = self.TASK_TO_AGENT_MAP[self.task](
model_src=self.model_src, model_kwargs=self.model_kwargs, **self.kwargs
)
def __getattr__(self, name: str) -> Any:
"""Delegate attribute access to the agent if not found in AutoAgent."""
try:
attr = getattr(self.agent, name)
if callable(attr):
@wraps(attr)
def wrapper(*args, **kwargs):
return attr(*args, **kwargs)
return wrapper
return attr
except AttributeError as err:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'") from err
def act(self, *args, **kwargs) -> Any:
"""Invoke the agent's act method without reinitializing the agent."""
return self.agent.act(*args, **kwargs)
@staticmethod
def available_tasks() -> None:
"""Print available tasks that can be used with AutoAgent."""
print("Available tasks:") # noqa: T201
for task in AutoAgent.TASK_TO_AGENT_MAP:
print(f"- {task}") # noqa: T201
def get_agent(
task: Literal[
"language", "motion-openvla", "sense-object-detection", "sense-image-segmentation", "sense-depth-estimation"
],
model_src: str,
model_kwargs: Dict | None = None,
**kwargs,
) -> Agent:
"""Initialize the AutoAgent with the specified task and model.
This is an alternative to using the AutoAgent class directly. It returns the corresponding agent instance directly.
Usage:
```python
# Get LanguageAgent instance
language_agent = get_agent(task="language", model_src="openai")
response = language_agent.act("What is the capital of France?")
# Get OpenVlaAgent instance
openvla_agent = get_agent(task="motion-openvla", model_src="https://api.mbodi.ai/community-models/")
action = openvla_agent.act("move hand forward", Image(size=(224, 224)))
# Get DepthEstimationAgent instance
depth_agent = get_agent(task="sense-depth-estimation", model_src="https://api.mbodi.ai/sense/")
depth = depth_agent.act(image=Image("resources/bridge_example.jpeg", size=(224, 224)))
```
"""
if task not in AutoAgent.TASK_TO_AGENT_MAP:
raise ValueError(
f"Task '{task}' is not supported. Supported tasks: {list(AutoAgent.TASK_TO_AGENT_MAP.keys())}. "
"Use AutoAgent.available_tasks() to view all available tasks."
)
if model_kwargs is None:
model_kwargs = {}
return AutoAgent.TASK_TO_AGENT_MAP[task](model_src=model_src, model_kwargs=model_kwargs, **kwargs)
# Example usage
if __name__ == "__main__":
auto_agent = AutoAgent(task="language", model_src="openai")
response = auto_agent.act("What is the capital of France?")
print(response)
stream = auto_agent.act_and_stream("What is the capital of France?")
for chunk in stream:
print(chunk)
auto_agent = AutoAgent(task="motion-openvla", model_src="https://api.mbodi.ai/community-models/")
action = auto_agent.act("move hand forward", Image(size=(224, 224)))
print(action)
auto_agent = AutoAgent(
task="motion-openvla", model_src="gradio", model_kwargs={"endpoint": "https://api.mbodi.ai/community-models/"}
)
action = auto_agent.act("move hand forward", Image(size=(224, 224)), "bridge_orig")
print(action)
auto_agent = AutoAgent(task="sense-depth-estimation", model_src="https://api.mbodi.ai/sense/")
image = Image("resources/bridge_example.jpeg", size=(224, 224))
result = auto_agent.act(image=image)
result.pil.show()
auto_agent = get_agent(task="language", model_src="openai")
response = auto_agent.act("What is the capital of France?")
print(response)