diff --git a/pyomo/contrib/mindtpy/algorithm_base_class.py b/pyomo/contrib/mindtpy/algorithm_base_class.py index e015fc89e09..e7eb859a5fb 100644 --- a/pyomo/contrib/mindtpy/algorithm_base_class.py +++ b/pyomo/contrib/mindtpy/algorithm_base_class.py @@ -2974,7 +2974,7 @@ def MindtPy_iteration_loop(self): fixed_nlp, fixed_nlp_result = self.solve_subproblem() self.handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result) - if self.algorithm_should_terminate(check_cycling=True): + if self.algorithm_should_terminate(check_cycling=not config.solution_pool): self.last_iter_cuts = False break @@ -2998,26 +2998,31 @@ def MindtPy_iteration_loop(self): break else: solution_name_obj = self.get_solution_name_obj(main_mip_results) + all_explored = True for index, (name, _) in enumerate(solution_name_obj): # the optimal solution of the main problem has been added to integer_list above # so we should skip checking cycling for the first solution in the solution pool - if index > 0: - copy_var_list_values_from_solution_pool( - self.mip.MindtPy_utils.variable_list, - self.fixed_nlp.MindtPy_utils.variable_list, - config, - solver_model=main_mip_results._solver_model, - var_map=main_mip_results._pyomo_var_to_solver_var_map, - solution_name=name, + # self.algorithm_should_terminate(check_cycling=not config.solution_pool) has been changed. + # No longer need to skip cycling check for the best solution in the solution pool. + # if index > 0: + + copy_var_list_values_from_solution_pool( + self.mip.MindtPy_utils.variable_list, + self.fixed_nlp.MindtPy_utils.variable_list, + config, + solver_model=main_mip_results._solver_model, + var_map=main_mip_results._pyomo_var_to_solver_var_map, + solution_name=name, + ) + self.curr_int_sol = get_integer_solution(self.fixed_nlp) + if self.curr_int_sol in set(self.integer_list): + config.logger.info( + 'The same combination has been explored and will be skipped here.' ) - self.curr_int_sol = get_integer_solution(self.fixed_nlp) - if self.curr_int_sol in set(self.integer_list): - config.logger.info( - 'The same combination has been explored and will be skipped here.' - ) - continue - else: - self.integer_list.append(self.curr_int_sol) + continue + else: + self.integer_list.append(self.curr_int_sol) + all_explored = False # Call the NLP pre-solve callback with time_code(self.timing, 'Call before subproblem solve'): @@ -3033,6 +3038,11 @@ def MindtPy_iteration_loop(self): if self.algorithm_should_terminate(check_cycling=False): self.last_iter_cuts = True break # TODO: break two loops. + if all_explored: + config.logger.info("Cycling") + if self.primal_bound not in [float('-inf'), float('inf')]: + self.results.solver.termination_condition = tc.feasible + break # if add_no_good_cuts is True, the bound obtained in the last iteration is no reliable. # we correct it after the iteration. @@ -3049,6 +3059,18 @@ def MindtPy_iteration_loop(self): ) def get_solution_name_obj(self, main_mip_results): + """Obtain the name and objective value of the solutions in the solution pool. + + Parameters + ---------- + main_mip_results : SolverResults + The results of the main problem. + + Returns + ------- + list + a 2D list containing the name and objective value of the solutions in the solution pool. + """ if self.config.mip_solver == 'cplex_persistent': solution_pool_names = ( main_mip_results._solver_model.solution.pool.get_names() @@ -3067,13 +3089,52 @@ def get_solution_name_obj(self, main_mip_results): gurobipy.GRB.Param.SolutionNumber, name ) obj = main_mip_results._solver_model.PoolObjVal + # Here the list only contains the name and objective value of the solutions in the solution pool. + # If you want to add more information, you can add them here. solution_name_obj.append([name, obj]) + # sort the solutions by objective value, which can be changed according to the user's needs. solution_name_obj.sort( key=itemgetter(1), reverse=self.objective_sense == maximize ) + # TODO: I am not sure if you want to sort the solution pool or choose one solution from the pool. + # TODO: add whatever you want to sort the solution pool + self.sort_solutions(solution_name_obj, main_mip_results) + # only keep the first num_solution_iteration solutions solution_name_obj = solution_name_obj[: self.config.num_solution_iteration] return solution_name_obj + def sort_solutions(self, solution_name_obj, main_mip_results): + """Choose the solutions from the solution pool. + + Parameters + ---------- + solution_name_obj : list + a 2D list containing the name and objective value of the solutions in the solution pool. + + main_mip_results : SolverResults + The results of the main problem. + + Returns + ------- + solution_name_obj : list + a sorted 2D list containing the name and objective value of the solutions in the solution pool. + + """ + # Choose the solutions from the solution pool. + # for name, obj in solution_name_obj: + # # get the solution from the solution pool + # copy_var_list_values_from_solution_pool( + # self.mip.MindtPy_utils.variable_list, + # self.fixed_nlp.MindtPy_utils.variable_list, + # self.config, + # solver_model=main_mip_results._solver_model, + # var_map=main_mip_results._pyomo_var_to_solver_var_map, + # solution_name=name, + # ) + # # Call your rl model or other strategies to sort the solution pools. + + return solution_name_obj + def add_regularization(self): if self.best_solution_found is not None: # The main problem might be unbounded, regularization is activated only when a valid bound is provided.