conda create -n opnet python=3.7 -y
source activate opnet
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
pip install ninja yacs cython matplotlib tqdm
pip install opencv-python==4.4.0.40
pip install scikit-image
export INSTALL_DIR=$PWD
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install
cd $INSTALL_DIR
git clone https://github.com/ZitengXue/OPNet.git
cd OPNet/
pip install -r requirements.txt
python3 setup.py build develop
The D2S Amodal dataset could be found at mvtec-d2sa .
Download the Images
from KITTI dataset .
The Amodal Annotations
could be found at KINS dataset
Follow WALT ,we will release soon.
Expected folder structure for each dataset
$PROJECT_DIR/
|OPNet/
|-detectron2/
|-- data/
|---- datasets/
|------- KINS/
|---------- train_imgs/
|---------- test_imgs/
|---------- annotations/
|------------- train.json
|------------- test.json
|------- D2SA/
|-------- annotations/
|-------- images/
|------- CWALT/
|...
Then, See here for more details on data registration
Multi-GPU Training and evaluation on Validation set
For example, on the D2SA dataset, we show how to train our method and other baselines.
1.Train our model (ResNet50 backbone) on D2SA dataset :
CUDA_VISIBLE_DEVICES=0,1 python tools/train_net.py --config-file configs/D2SA-AmodalSegmentation/bounday.yaml--num-gpus 2
If you want to eval your saved checkpoints:
python tools/train_net.py --config-file configs/{your_yaml_file}
--eval-only MODEL.WEIGHTS {your_OUTPUT_DIR}/model_final.pth' --num-gpus x
Our work benefits a lot from BCNet and VRSP-Net . Thanks for their wonderful works.