-
Notifications
You must be signed in to change notification settings - Fork 105
/
app.py
553 lines (460 loc) · 20.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# --------------------------------------------------------
# PersonalizeSAM -- Personalize Segment Anything Model with One Shot
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from PIL import Image
import torch
import torch.nn as nn
import gradio as gr
import numpy as np
from torch.nn import functional as F
from show import *
from per_segment_anything import sam_model_registry, SamPredictor
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
return super().preprocess(x)
class Mask_Weights(nn.Module):
def __init__(self):
super().__init__()
self.weights = nn.Parameter(torch.ones(2, 1, requires_grad=True) / 3)
def point_selection(mask_sim, topk=1):
# Top-1 point selection
w, h = mask_sim.shape
topk_xy = mask_sim.flatten(0).topk(topk)[1]
topk_x = (topk_xy // h).unsqueeze(0)
topk_y = (topk_xy - topk_x * h)
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
topk_label = np.array([1] * topk)
topk_xy = topk_xy.cpu().numpy()
# Top-last point selection
last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1]
last_x = (last_xy // h).unsqueeze(0)
last_y = (last_xy - last_x * h)
last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0)
last_label = np.array([0] * topk)
last_xy = last_xy.cpu().numpy()
return topk_xy, topk_label, last_xy, last_label
def calculate_dice_loss(inputs, targets, num_masks = 1):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
def calculate_sigmoid_focal_loss(inputs, targets, num_masks = 1, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_masks
def inference(ic_image, ic_mask, image1, image2):
# in context image and mask
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
predictor = SamPredictor(sam)
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
print("======> Obtain Location Prior" )
target_feat = ref_feat[ref_mask > 0]
target_embedding = target_feat.mean(0).unsqueeze(0)
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
target_embedding = target_embedding.unsqueeze(0)
output_image = []
for test_image in [image1, image2]:
print("======> Testing Image" )
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive-negative location prior
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
# Obtain the target guidance for cross-attention layers
sim = (sim - sim.mean()) / torch.std(sim)
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
# First-step prediction
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=False,
attn_sim=attn_sim, # Target-guided Attention
target_embedding=target_embedding # Target-semantic Prompting
)
best_idx = 0
# Cascaded Post-refinement-1
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
def inference_scribble(image, image1, image2):
# in context image and mask
ic_image = image["image"]
ic_mask = image["mask"]
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
predictor = SamPredictor(sam)
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
print("======> Obtain Location Prior" )
target_feat = ref_feat[ref_mask > 0]
target_embedding = target_feat.mean(0).unsqueeze(0)
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
target_embedding = target_embedding.unsqueeze(0)
output_image = []
for test_image in [image1, image2]:
print("======> Testing Image" )
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive-negative location prior
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
# Obtain the target guidance for cross-attention layers
sim = (sim - sim.mean()) / torch.std(sim)
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
# First-step prediction
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=False,
attn_sim=attn_sim, # Target-guided Attention
target_embedding=target_embedding # Target-semantic Prompting
)
best_idx = 0
# Cascaded Post-refinement-1
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
def inference_finetune(ic_image, ic_mask, image1, image2):
# in context image and mask
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
gt_mask = torch.tensor(ic_mask)[:, :, 0] > 0
gt_mask = gt_mask.float().unsqueeze(0).flatten(1).cuda()
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1)
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
for name, param in sam.named_parameters():
param.requires_grad = False
predictor = SamPredictor(sam)
print("======> Obtain Self Location Prior" )
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
target_feat = ref_feat[ref_mask > 0]
target_feat_mean = target_feat.mean(0)
target_feat_max = torch.max(target_feat, dim=0)[0]
target_feat = (target_feat_max / 2 + target_feat_mean / 2).unsqueeze(0)
# Cosine similarity
h, w, C = ref_feat.shape
target_feat = target_feat / target_feat.norm(dim=-1, keepdim=True)
ref_feat = ref_feat / ref_feat.norm(dim=-1, keepdim=True)
ref_feat = ref_feat.permute(2, 0, 1).reshape(C, h * w)
sim = target_feat @ ref_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive location prior
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
print('======> Start Training')
# Learnable mask weights
mask_weights = Mask_Weights().cuda()
# mask_weights = Mask_Weights()
mask_weights.train()
train_epoch = 1000
optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=1e-3, eps=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epoch)
for train_idx in range(train_epoch):
# Run the decoder
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=True)
logits_high = logits_high.flatten(1)
# Weighted sum three-scale masks
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
logits_high = logits_high * weights
logits_high = logits_high.sum(0).unsqueeze(0)
dice_loss = calculate_dice_loss(logits_high, gt_mask)
focal_loss = calculate_sigmoid_focal_loss(logits_high, gt_mask)
loss = dice_loss + focal_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if train_idx % 10 == 0:
print('Train Epoch: {:} / {:}'.format(train_idx, train_epoch))
current_lr = scheduler.get_last_lr()[0]
print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
mask_weights.eval()
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
weights_np = weights.detach().cpu().numpy()
print('======> Mask weights:\n', weights_np)
print('======> Start Testing')
output_image = []
for test_image in [image1, image2]:
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive location prior
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
# First-step prediction
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=True)
# Weighted sum three-scale masks
logits_high = logits_high * weights.unsqueeze(-1)
logit_high = logits_high.sum(0)
mask = (logit_high > 0).detach().cpu().numpy()
logits = logits * weights_np[..., None]
logit = logits.sum(0)
# Cascaded Post-refinement-1
y, x = np.nonzero(mask)
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logit[None, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
description = """
<div style="text-align: center; font-weight: bold;">
<span style="font-size: 18px" id="paper-info">
[<a href="https://github.com/ZrrSkywalker/Personalize-SAM" target="_blank"><font color='black'>Github</font></a>]
[<a href="https://arxiv.org/pdf/2305.03048.pdf" target="_blank"><font color='black'>Paper</font></a>]
</span>
</div>
"""
main = gr.Interface(
fn=inference,
inputs=[
gr.Image(type="pil", label="in context image",),
gr.Image(type="pil", label="in context mask"),
gr.Image(type="pil", label="test image1"),
gr.Image(type="pil", label="test image2"),
],
outputs=[
gr.outputs.Image(type="pil", label="output image1"),
gr.outputs.Image(type="pil", label="output image2"),
],
allow_flagging="never",
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
main_scribble = gr.Interface(
fn=inference_scribble,
inputs=[
gr.ImageMask(label="[Stroke] Draw on Image", type="pil"),
gr.Image(type="pil", label="test image1"),
gr.Image(type="pil", label="test image2"),
],
outputs=[
gr.outputs.Image(type="pil", label="output image1"),
gr.outputs.Image(type="pil", label="output image2"),
],
allow_flagging="never",
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
main_finetune = gr.Interface(
fn=inference_finetune,
inputs=[
gr.Image(type="pil", label="in context image"),
gr.Image(type="pil", label="in context mask"),
gr.Image(type="pil", label="test image1"),
gr.Image(type="pil", label="test image2"),
],
outputs=[
gr.components.Image(type="pil", label="output image1"),
gr.components.Image(type="pil", label="output image2"),
],
allow_flagging="never",
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
demo = gr.Blocks()
with demo:
gr.TabbedInterface(
[main, main_scribble, main_finetune],
["Personalize-SAM", "Personalize-SAM-Scribble", "Personalize-SAM-F"],
)
demo.launch(share=True)