forked from google/lyra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lyra_wavegru.h
385 lines (337 loc) · 15.2 KB
/
lyra_wavegru.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_LYRA_WAVEGRU_H_
#define LYRA_CODEC_LYRA_WAVEGRU_H_
#include <algorithm>
#include <atomic>
#include <cstddef>
#include <functional>
#include <memory>
#include <random>
#include <string>
#include <tuple>
#include <vector>
#include "glog/logging.h"
#include "absl/memory/memory.h"
#include "absl/time/clock.h" // for SleepFor
#include "absl/time/time.h"
#include "absl/types/span.h"
#include "include/ghc/filesystem.hpp"
#include "causal_convolutional_conditioning.h"
#include "dsp_util.h"
#include "layer_wrappers_lib.h"
#include "lyra_types.h"
#include "project_and_sample.h"
#include "sparse_inference_matrixvector.h"
namespace chromemedia {
namespace codec {
template <typename WeightTypeKind>
class LyraWavegru {
public:
using Types = WavegruTypes<WeightTypeKind>;
using ArWeightType = typename Types::ArWeightType;
using ArRhsType = typename Types::ArRhsType;
using ArOutputType = typename Types::ArOutputType;
using GruWeightType = typename Types::GruWeightType;
using GruStateType = typename Types::GruStateType;
using GruRhsType = typename Types::GruRhsType;
using DiskWeightType = typename Types::DiskWeightType;
using ScratchType = typename Types::ScratchType;
using ArLayerType =
LayerWrapper<ArWeightType, ArRhsType, ArOutputType, DiskWeightType>;
using GruLayerType =
LayerWrapper<GruWeightType, GruStateType, GruRhsType, DiskWeightType>;
using ConditioningType =
CausalConvolutionalConditioning<ConditioningTypes<WeightTypeKind>>;
// TODO(b/161747203): Use LayerWrapper for the project and sample layer.
using ProjectAndSampleType =
ProjectAndSample<ProjectAndSampleTypes<WeightTypeKind>>;
static std::unique_ptr<LyraWavegru<WeightTypeKind>> Create(
int num_threads, const ghc::filesystem::path& path,
const std::string& prefix) {
#if defined __aarch64__
LOG(INFO)
<< "lyra_wavegru running fast multiplication kernels for aarch64.";
#elif defined __AVX__
LOG(INFO) << "lyra_wavegru running fast multiplication kernels for AVX.";
#else // defined __AVX__
LOG(WARNING) << "lyra_wavegru running in slow generic mode.";
#endif // defined __aarch64__
LayerParams ar_to_gates_params{.num_input_channels = kNumSplitBands,
.num_filters = 3 * kNumGruHiddens,
.length = 1,
.kernel_size = 1,
.dilation = 1,
.stride = 1,
.relu = false,
.skip_connection = false,
.type = LayerType::kConv1D,
.num_threads = num_threads,
.per_column_barrier = false,
.from =
LayerParams::FromDisk{
.path = path.string(),
.zipped = true,
},
.prefix = prefix + "_ar_to_gates_"};
auto ar_to_gates_layer = ArLayerType::Create(ar_to_gates_params);
if (ar_to_gates_layer == nullptr) {
return nullptr;
}
LayerParams gru_params{.num_input_channels = kNumGruHiddens,
.num_filters = 3 * kNumGruHiddens,
.length = 1,
.kernel_size = 1,
.dilation = 1,
.stride = 1,
.relu = false,
.skip_connection = false,
.type = LayerType::kConv1D,
.num_threads = num_threads,
.per_column_barrier = false,
.from =
LayerParams::FromDisk{
.path = path.string(),
.zipped = true,
},
.prefix = prefix + "_gru_layer_"};
auto gru_layer = GruLayerType::Create(gru_params);
if (gru_layer == nullptr) {
return nullptr;
}
auto project_and_sample_layer = absl::make_unique<ProjectAndSampleType>();
project_and_sample_layer->LoadRaw(path, prefix + "_", /*zipped=*/true);
if (project_and_sample_layer->PrepareForThreads(num_threads) !=
num_threads) {
LOG(ERROR) << "Could not prepare project_and_sample for " << num_threads
<< " threads.";
return nullptr;
}
return absl::WrapUnique(new LyraWavegru<WeightTypeKind>(
num_threads, std::move(ar_to_gates_layer), std::move(gru_layer),
std::move(project_and_sample_layer)));
}
// The |num_samples_to_generate| is only used by the main thread, which
// will store this number in |num_samples_to_generate_|. All background
// threads will load from |num_samples_to_generate_| for each iteration of the
// while loop.
int SampleThreaded(int tid, ConditioningType* conditioning,
std::vector<std::vector<int16_t>>* split_band_samples,
int num_samples_to_generate) {
int num_samples_generated = 0;
// Thread with |tid| = 0 will break out of this while loop after 1
// iteration. All other threads will be in this while loop until
// |terminate_threads_| is set to true.
while (!terminate_threads_.load()) {
// |main_thread_ready_| is used to let background threads do a non-busy
// wait while the main thread is returned to the caller to do extra work
// outside such as packet handling.
if (tid == 0) {
num_samples_to_generate_.store(num_samples_to_generate);
} else {
// Background threads will effectively non-busy wait here until
// |num_samples_to_generate_| is set to a value greater than 0.
if (num_samples_to_generate_.load() <= 0) {
absl::SleepFor(absl::Microseconds(100));
continue;
}
}
num_samples_generated = SamplingBody(
spin_barrier_.get(), tid, conditioning, split_band_samples, nullptr);
// Synchronize all threads before the main thread updates
// |num_samples_to_generate_|, otherwise the background threads may not
// have the chance to run SamplingBody().
spin_barrier_->barrier();
// Synchronize all threads after the main thread updates
// |num_samples_to_generate_|, otherwise on the final packet the
// background threads may bypass the
// (num_samples_to_generate_.load() <= 0) check and
// become stuck at the first spin barrier in |SamplingBody| which will
// never be matched by the main thread.
if (tid == 0) {
conditioning_start_.store(conditioning_start_.load() +
num_samples_generated);
num_samples_to_generate_.store(0);
}
spin_barrier_->barrier();
if (tid == 0) {
break;
}
}
return num_samples_generated;
}
// Causes all threads with |tid| != 0 to break out of their |SamplingBody|
// loop.
void TerminateThreads() { terminate_threads_.store(true); }
void ResetConditioningStart() { conditioning_start_.store(0); }
int num_gru_hiddens() const { return kNumGruHiddens; }
int num_split_bands() const { return kNumSplitBands; }
private:
static constexpr int kNumGruHiddens = 1024;
static constexpr int kNumSplitBands = 4;
LyraWavegru() = delete;
LyraWavegru(int num_threads, std::unique_ptr<ArLayerType> ar_to_gates_layer,
std::unique_ptr<GruLayerType> gru_layer,
std::unique_ptr<ProjectAndSampleType> project_and_sample_layer)
: num_threads_(num_threads),
ar_to_gates_layer_(std::move(ar_to_gates_layer)),
gru_layer_(std::move(gru_layer)),
project_and_sample_layer_(std::move(project_and_sample_layer)),
sample_at_s_(kNumSplitBands),
terminate_threads_(false),
num_samples_to_generate_(0),
conditioning_start_(0) {
InitLoadedLayers();
InitializeGenerators();
spin_barrier_ =
absl::make_unique<csrblocksparse::SpinBarrier>(num_threads_);
}
void InitLoadedLayers() {
LOG(INFO) << "Model size: " << ModelSize() << " bytes";
// Working space for activations.
ar_output_buffer_ = csrblocksparse::CacheAlignedVector<ArOutputType>(
ar_to_gates_layer_->rows());
ar_output_buffer_.FillZero();
ar_and_cond_to_gates_buffer_ =
csrblocksparse::CacheAlignedVector<GruRhsType>(
ar_to_gates_layer_->rows());
ar_and_cond_to_gates_buffer_.FillZero();
gru_gates_buffer_ =
csrblocksparse::CacheAlignedVector<GruRhsType>(gru_layer_->rows());
gru_gates_buffer_.FillZero();
}
std::size_t ModelSize() const {
return gru_layer_->bytes() + project_and_sample_layer_->ModelSize() +
ar_to_gates_layer_->bytes();
}
int SamplingBody(
csrblocksparse::SpinBarrier* spin_barrier, int tid,
ConditioningType* conditioning,
std::vector<std::vector<int16_t>>* split_band_samples,
const std::function<void(int16_t*, int, int, int)>& /*unused*/) {
CHECK_EQ(kNumSplitBands, split_band_samples->size());
const int conditioning_start = conditioning_start_.load();
const int num_samples_to_generate =
std::min(num_samples_to_generate_.load(),
conditioning->num_samples() - conditioning_start);
// We can only generate samples in multiples of |kNumSplitBands|.
CHECK_EQ(num_samples_to_generate % kNumSplitBands, 0);
CHECK_GE(num_samples_to_generate, 0);
// This is a scratch space, whose size should be multiple of 8.
csrblocksparse::CacheAlignedVector<ScratchType> sample_tmp(
project_and_sample_layer_->expanded_mixes_size());
sample_tmp.FillZero();
std::minstd_rand* thread_local_gen = &thread_local_gens_[tid];
int start, end;
std::tie(start, end) = ComputeStartAndEnd(tid, kNumGruHiddens);
for (int s = 0; s < num_samples_to_generate; s += kNumSplitBands) {
// Bring the AR sample(s) up to 3 * kNumGruHiddens.
ar_to_gates_layer_->Run(tid, spin_barrier,
ar_output_buffer_.AsMutableView());
// Sum the conditioning and autoregressive output.
SumConditioningAndAutoregressive(
conditioning->AtStep(conditioning_start + s), 3 * start, 3 * end,
spin_barrier);
// Pass through the GRU layer.
gru_layer_->Run(tid, spin_barrier, gru_gates_buffer_.AsMutableView());
gru_gates_
.template GruWithARInput<csrblocksparse::ARInputsMode::k0ARInputs>(
start, end, /*state_size=*/kNumGruHiddens,
/*gru_recurrent_ptr=*/gru_gates_buffer_.data(),
/*input_ptr=*/ar_and_cond_to_gates_buffer_.data(),
/*gru_state_ptr=*/gru_layer_->InputViewToUpdate().data());
spin_barrier->barrier();
// Project and sample.
project_and_sample_layer_->GetSamples(
gru_layer_->InputViewToUpdate(), tid, thread_local_gen, &sample_tmp,
kNumSplitBands, sample_at_s_.data());
if (tid == 0) {
// Loop back the samples as the input of |ar_to_gates_layer_| for the
// next step.
auto sample_at_sminus1 = ar_to_gates_layer_->InputViewToUpdate();
for (int i = 0; i < kNumSplitBands; ++i) {
sample_at_sminus1[i] =
static_cast<ArRhsType>(SampleToFloat(sample_at_s_.at(i)));
split_band_samples->at(i).at(s / kNumSplitBands) = sample_at_s_.at(i);
}
}
spin_barrier->barrier();
} // end of for (int s = 0; ...).
return num_samples_to_generate;
}
// Computes the intervals of gru gates to be computed by the given tid.
std::tuple<int, int> ComputeStartAndEnd(int tid, int state_size) const {
int factor = gru_gates_.kSIMDWidth;
factor *= state_size / (factor * num_threads_);
return std::make_tuple(factor * tid, tid == num_threads_ - 1
? state_size
: factor * (tid + 1));
}
// The range [-32768, 32767] is mapped to floating point by x / 32768.0f
// resulting in a range of [-1.f, 1.f).
static float SampleToFloat(int sample) {
return static_cast<float>(sample) / 32768.0f;
}
// Initializes the thread local sampling generators, one per thread of
// |num_threads_|. This method is called once during construction.
void InitializeGenerators() {
// All threads see the same sequence and make the same sampling decisions.
thread_local_gens_ = std::vector<std::minstd_rand>(num_threads_);
// Discard the first 10 samples for each generator, to get them into a good
// state for sampling.
for (int i = 0; i < num_threads_; ++i) {
thread_local_gens_[i].discard(10);
}
}
void SumConditioningAndAutoregressive(
const absl::Span<GruRhsType> conditioning_span, int sum_start,
int sum_end, csrblocksparse::SpinBarrier* spin_barrier) {
CastVector(sum_start, sum_end, ar_output_buffer_.data(),
ar_and_cond_to_gates_buffer_.data());
csrblocksparse::detail::SumVectors(sum_start, sum_end,
conditioning_span.data(),
ar_and_cond_to_gates_buffer_.data(),
ar_and_cond_to_gates_buffer_.data());
spin_barrier->barrier();
}
const int num_threads_;
// Random generators for each thread.
std::vector<std::minstd_rand> thread_local_gens_;
// Layers.
// The layer that transforms the AR input to the input of GRU gates is just a
// column vector with no bias (the combined bias is handled in the
// conditioning stack).
std::unique_ptr<ArLayerType> ar_to_gates_layer_;
std::unique_ptr<GruLayerType> gru_layer_;
// TODO(b/161747203): Use LayerWrapper for the project and sample layer.
std::unique_ptr<ProjectAndSampleType> project_and_sample_layer_;
csrblocksparse::GruGates<GruStateType, GruRhsType, ArRhsType> gru_gates_;
// Buffers.
csrblocksparse::CacheAlignedVector<ArOutputType> ar_output_buffer_;
csrblocksparse::CacheAlignedVector<GruRhsType> ar_and_cond_to_gates_buffer_;
csrblocksparse::CacheAlignedVector<GruRhsType> gru_gates_buffer_;
std::vector<int> sample_at_s_;
std::atomic<bool> terminate_threads_;
// To support generating any number of samples, the main thread is responsible
// for setting the number (which will be read by children threads), as well
// as tracking the position to read next from the conditioning vector.
std::atomic<int> num_samples_to_generate_;
std::atomic<int> conditioning_start_;
std::unique_ptr<csrblocksparse::SpinBarrier> spin_barrier_;
};
} // namespace codec
} // namespace chromemedia
#endif // LYRA_CODEC_LYRA_WAVEGRU_H_