forked from aharley/simple_bev
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_lyft.py
438 lines (356 loc) · 14.8 KB
/
eval_lyft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import os
import time
import argparse
import numpy as np
import saverloader
from fire import Fire
from nets.segnet import Segnet
import utils.misc
import utils.improc
import utils.vox
import random
import nuscenesdataset
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from tensorboardX import SummaryWriter
import torch.nn.functional as F
random.seed(125)
np.random.seed(125)
scene_centroid_x = 0.0
scene_centroid_y = 2.0
scene_centroid_z = 0.0
scene_centroid_py = np.array([scene_centroid_x,
scene_centroid_y,
scene_centroid_z]).reshape([1, 3])
scene_centroid = torch.from_numpy(scene_centroid_py).float()
XMIN, XMAX = -50, 50
ZMIN, ZMAX = -50, 50
YMIN, YMAX = -5, 5
bounds = (XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX)
Z, Y, X = 200, 8, 200
def requires_grad(parameters, flag=True):
for p in parameters:
p.requires_grad = flag
class SimpleLoss(torch.nn.Module):
def __init__(self, pos_weight):
super(SimpleLoss, self).__init__()
self.loss_fn = torch.nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([pos_weight]), reduction='none')
def forward(self, ypred, ytgt, valid):
loss = self.loss_fn(ypred, ytgt)
loss = utils.basic.reduce_masked_mean(loss, valid)
return loss
def balanced_mse_loss(pred, gt, valid=None):
pos_mask = gt.gt(0.5).float()
neg_mask = gt.lt(0.5).float()
if valid is None:
valid = torch.ones_like(pos_mask)
mse_loss = F.mse_loss(pred, gt, reduction='none')
pos_loss = utils.basic.reduce_masked_mean(mse_loss, pos_mask*valid)
neg_loss = utils.basic.reduce_masked_mean(mse_loss, neg_mask*valid)
loss = (pos_loss + neg_loss)*0.5
return loss
def balanced_ce_loss(out, target, valid):
B, N, H, W = out.shape
total_loss = torch.tensor(0.0).to(out.device)
normalizer = 0
NN = valid.shape[1]
assert(NN==1)
for n in range(N):
out_ = out[:,n]
tar_ = target[:,n]
val_ = valid[:,0]
pos = tar_.gt(0.99).float()
neg = tar_.lt(0.95).float()
label = pos*2.0 - 1.0
a = -label * out_
b = F.relu(a)
loss = b + torch.log(torch.exp(-b)+torch.exp(a-b))
if torch.sum(pos*val_) > 0:
pos_loss = utils.basic.reduce_masked_mean(loss, pos*val_)
neg_loss = utils.basic.reduce_masked_mean(loss, neg*val_)
total_loss += (pos_loss + neg_loss)*0.5
normalizer += 1
else:
total_loss += loss.mean()
normalizer += 1
return total_loss / normalizer
def balanced_occ_loss(pred, occ, free):
pos = occ.clone()
neg = free.clone()
label = pos*2.0 - 1.0
a = -label * pred
b = F.relu(a)
loss = b + torch.log(torch.exp(-b)+torch.exp(a-b))
mask_ = (pos+neg>0.0).float()
pos_loss = utils.basic.reduce_masked_mean(loss, pos)
neg_loss = utils.basic.reduce_masked_mean(loss, neg)
balanced_loss = pos_loss + neg_loss
return balanced_loss
def run_model(model, loss_fn, d, device='cuda:0', sw=None):
metrics = {}
total_loss = torch.tensor(0.0, requires_grad=True).to(device)
imgs, rots, trans, intrins, pts0, extra0, pts, extra, lrtlist_velo, vislist, tidlist, scorelist, seg_bev_g, valid_bev_g, center_bev_g, offset_bev_g, radar_data, egopose = d
B0,T,S,C,H,W = imgs.shape
assert(T==1)
# eliminate the time dimension
imgs = imgs[:,0]
rots = rots[:,0]
trans = trans[:,0]
intrins = intrins[:,0]
pts0 = pts0[:,0]
extra0 = extra0[:,0]
pts = pts[:,0]
extra = extra[:,0]
lrtlist_velo = lrtlist_velo[:,0]
vislist = vislist[:,0]
tidlist = tidlist[:,0]
scorelist = scorelist[:,0]
seg_bev_g = seg_bev_g[:,0]
valid_bev_g = valid_bev_g[:,0]
center_bev_g = center_bev_g[:,0]
offset_bev_g = offset_bev_g[:,0]
radar_data = radar_data[:,0]
egopose = egopose[:,0]
origin_T_velo0t = egopose.to(device) # B,T,4,4
lrtlist_velo = lrtlist_velo.to(device)
scorelist = scorelist.to(device)
rgb_camXs = imgs.float().to(device)
rgb_camXs = rgb_camXs - 0.5 # go to -0.5, 0.5
seg_bev_g = seg_bev_g.to(device)
valid_bev_g = valid_bev_g.to(device)
center_bev_g = center_bev_g.to(device)
offset_bev_g = offset_bev_g.to(device)
xyz_velo0 = pts.to(device).permute(0, 2, 1)
rad_data = radar_data.to(device).permute(0, 2, 1) # B, R, 19
xyz_rad = rad_data[:,:,:3]
meta_rad = rad_data[:,:,3:]
B, S, C, H, W = rgb_camXs.shape
B, V, D = xyz_velo0.shape
__p = lambda x: utils.basic.pack_seqdim(x, B)
__u = lambda x: utils.basic.unpack_seqdim(x, B)
mag = torch.norm(xyz_velo0, dim=2)
xyz_velo0 = xyz_velo0[:,mag[0]>1]
xyz_velo0_bak = xyz_velo0.clone()
intrins_ = __p(intrins)
pix_T_cams_ = utils.geom.merge_intrinsics(*utils.geom.split_intrinsics(intrins_)).to(device)
pix_T_cams = __u(pix_T_cams_)
velo_T_cams = utils.geom.merge_rtlist(rots, trans).to(device)
cams_T_velo = __u(utils.geom.safe_inverse(__p(velo_T_cams)))
cam0_T_camXs = utils.geom.get_camM_T_camXs(velo_T_cams, ind=0)
camXs_T_cam0 = __u(utils.geom.safe_inverse(__p(cam0_T_camXs)))
cam0_T_camXs_ = __p(cam0_T_camXs)
camXs_T_cam0_ = __p(camXs_T_cam0)
xyz_cam0 = utils.geom.apply_4x4(cams_T_velo[:,0], xyz_velo0)
rad_xyz_cam0 = utils.geom.apply_4x4(cams_T_velo[:,0], xyz_rad)
lrtlist_cam0 = utils.geom.apply_4x4_to_lrtlist(cams_T_velo[:,0], lrtlist_velo)
vox_util = utils.vox.Vox_util(
Z, Y, X,
scene_centroid=scene_centroid.to(device),
bounds=bounds,
assert_cube=False)
V = xyz_velo0.shape[1]
occ_mem0 = vox_util.voxelize_xyz(xyz_cam0, Z, Y, X, assert_cube=False)
rad_occ_mem0 = vox_util.voxelize_xyz(rad_xyz_cam0, Z, Y, X, assert_cube=False)
metarad_occ_mem0 = vox_util.voxelize_xyz_and_feats(rad_xyz_cam0, meta_rad, Z, Y, X, assert_cube=False)
if not (model.module.use_radar or model.module.use_lidar):
in_occ_mem0 = None
elif model.module.use_lidar:
assert(model.module.use_radar==False) # either lidar or radar, not both
assert(model.module.use_metaradar==False) # either lidar or radar, not both
in_occ_mem0 = occ_mem0
elif model.module.use_radar and model.module.use_metaradar:
in_occ_mem0 = metarad_occ_mem0
elif model.module.use_radar:
in_occ_mem0 = rad_occ_mem0
elif model.module.use_metaradar:
assert(False) # cannot use_metaradar without use_radar
cam0_T_camXs = cam0_T_camXs
lrtlist_cam0_g = lrtlist_cam0
_, feat_bev_e, seg_bev_e, center_bev_e, offset_bev_e = model(
rgb_camXs=rgb_camXs,
pix_T_cams=pix_T_cams,
cam0_T_camXs=cam0_T_camXs,
vox_util=vox_util,
rad_occ_mem0=in_occ_mem0)
ce_loss = loss_fn(seg_bev_e, seg_bev_g, valid_bev_g)
center_loss = balanced_mse_loss(center_bev_e, center_bev_g)
offset_loss = torch.abs(offset_bev_e-offset_bev_g).sum(dim=1, keepdim=True)
offset_loss = utils.basic.reduce_masked_mean(offset_loss, seg_bev_g*valid_bev_g)
ce_factor = 1 / torch.exp(model.module.ce_weight)
ce_loss = 10.0 * ce_loss * ce_factor
ce_uncertainty_loss = 0.5 * model.module.ce_weight
center_factor = 1 / (2*torch.exp(model.module.center_weight))
center_loss = center_factor * center_loss
center_uncertainty_loss = 0.5 * model.module.center_weight
offset_factor = 1 / (2*torch.exp(model.module.offset_weight))
offset_loss = offset_factor * offset_loss
offset_uncertainty_loss = 0.5 * model.module.offset_weight
total_loss += ce_loss
total_loss += center_loss
total_loss += offset_loss
total_loss += ce_uncertainty_loss
total_loss += center_uncertainty_loss
total_loss += offset_uncertainty_loss
seg_bev_e_round = torch.sigmoid(seg_bev_e).round()
intersection = (seg_bev_e_round*seg_bev_g*valid_bev_g).sum()
union = ((seg_bev_e_round+seg_bev_g)*valid_bev_g).clamp(0,1).sum()
metrics['intersection'] = intersection.item()
metrics['union'] = union.item()
metrics['ce_loss'] = ce_loss.item()
metrics['center_loss'] = center_loss.item()
metrics['offset_loss'] = offset_loss.item()
if sw is not None and sw.save_this:
if model.module.use_radar or model.module.use_lidar:
sw.summ_occ('0_inputs/rad_occ_mem0', rad_occ_mem0)
sw.summ_occ('0_inputs/occ_mem0', occ_mem0)
sw.summ_rgb('0_inputs/rgb_camXs', torch.cat(rgb_camXs[0:1].unbind(1), dim=-1))
sw.summ_oned('2_outputs/seg_bev_g', seg_bev_g * (0.5+valid_bev_g*0.5), norm=False)
sw.summ_oned('2_outputs/valid_bev_g', valid_bev_g, norm=False)
sw.summ_oned('2_outputs/seg_bev_e', torch.sigmoid(seg_bev_e).round(), norm=False, frame_id=iou.item())
sw.summ_oned('2_outputs/seg_bev_e_soft', torch.sigmoid(seg_bev_e), norm=False)
sw.summ_oned('2_outputs/center_bev_g', center_bev_g, norm=False)
sw.summ_oned('2_outputs/center_bev_e', center_bev_e, norm=False)
sw.summ_flow('2_outputs/offset_bev_e', offset_bev_e, clip=10)
sw.summ_flow('2_outputs/offset_bev_g', offset_bev_g, clip=10)
return total_loss, metrics
def main(
exp_name='eval',
# val/test
log_freq=100,
shuffle=False,
dset='trainval', # we will just use val
batch_size=8,
nworkers=12,
# data/log/load directories
data_dir='../nuscenes/',
log_dir='logs_eval_nuscenes_bevseg',
init_dir='checkpoints/rgb_model',
ignore_load=None,
# data
res_scale=2,
ncams=6,
nsweeps=3,
# model
encoder_type='res101',
use_radar=False,
use_radar_filters=False,
use_lidar=False,
use_metaradar=False,
do_rgbcompress=True,
# cuda
device_ids=[4,5,6,7],
):
B = batch_size
assert(B % len(device_ids) == 0) # batch size must be divisible by number of gpus
device = 'cuda:%d' % device_ids[0]
## autogen a name
model_name = "%s" % init_dir.split('/')[-1]
model_name += "_%d" % B
model_name += "_%s" % exp_name
import datetime
model_date = datetime.datetime.now().strftime('%H:%M:%S')
model_name = model_name + '_' + model_date
print('model_name', model_name)
# set up logging
writer_ev = SummaryWriter(os.path.join(log_dir, model_name + '/ev'), max_queue=10, flush_secs=60)
# set up dataloader
final_dim = (int(224 * res_scale), int(416 * res_scale))
print('resolution:', final_dim)
data_aug_conf = {
'final_dim': final_dim,
'H': 1080, 'W': 1920,
'cams': ['CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT',
'CAM_BACK_LEFT', 'CAM_BACK', 'CAM_BACK_RIGHT'],
'ncams': ncams,
}
_, val_dataloader = nuscenesdataset.compile_data(
dset,
data_dir,
data_aug_conf=data_aug_conf,
centroid=scene_centroid_py,
bounds=bounds,
res_3d=(Z,Y,X),
bsz=B,
nworkers=1,
nworkers_val=nworkers,
shuffle=shuffle,
use_radar_filters=use_radar_filters,
seqlen=1, # we do not load a temporal sequence here, but that can work with this dataloader
nsweeps=nsweeps,
do_shuffle_cams=False,
get_tids=True,
)
val_iterloader = iter(val_dataloader)
max_iters = len(val_dataloader) # determine iters by length of dataset
# set up model & seg loss
seg_loss_fn = SimpleLoss(2.13).to(device)
model = Segnet(Z, Y, X, use_radar=use_radar, use_lidar=use_lidar, use_metaradar=use_metaradar, do_rgbcompress=do_rgbcompress, encoder_type=encoder_type)
model = model.to(device)
model = torch.nn.DataParallel(model, device_ids=device_ids)
parameters = list(model.parameters())
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('total_params', total_params)
# load checkpoint
_ = saverloader.load(init_dir, model.module, ignore_load=ignore_load)
global_step = 0
requires_grad(parameters, False)
model.eval()
# logging pools. pool size should be larger than max_iters
n_pool = 10000
loss_pool_ev = utils.misc.SimplePool(n_pool, version='np')
time_pool_ev = utils.misc.SimplePool(n_pool, version='np')
ce_pool_ev = utils.misc.SimplePool(n_pool, version='np')
center_pool_ev = utils.misc.SimplePool(n_pool, version='np')
offset_pool_ev = utils.misc.SimplePool(n_pool, version='np')
iou_pool_ev = utils.misc.SimplePool(n_pool, version='np')
itime_pool_ev = utils.misc.SimplePool(n_pool, version='np')
assert(n_pool > max_iters)
intersection = 0
union = 0
while global_step < max_iters:
global_step += 1
iter_start_time = time.time()
read_start_time = time.time()
sw_ev = utils.improc.Summ_writer(
writer=writer_ev,
global_step=global_step,
log_freq=log_freq,
fps=2,
scalar_freq=int(log_freq/2),
just_gif=True)
sw_ev.save_this = False
try:
sample = next(val_iterloader)
except StopIteration:
break
read_time = time.time()-read_start_time
with torch.no_grad():
total_loss, metrics = run_model(model, seg_loss_fn, sample, device, sw_ev)
intersection += metrics['intersection']
union += metrics['union']
sw_ev.summ_scalar('pooled/iou_ev', intersection/union)
loss_pool_ev.update([total_loss.item()])
sw_ev.summ_scalar('pooled/total_loss', loss_pool_ev.mean())
sw_ev.summ_scalar('stats/total_loss', total_loss.item())
ce_pool_ev.update([metrics['ce_loss']])
sw_ev.summ_scalar('pooled/ce_loss', ce_pool_ev.mean())
sw_ev.summ_scalar('stats/ce_loss', metrics['ce_loss'])
center_pool_ev.update([metrics['center_loss']])
sw_ev.summ_scalar('pooled/center_loss', center_pool_ev.mean())
sw_ev.summ_scalar('stats/center_loss', metrics['center_loss'])
offset_pool_ev.update([metrics['offset_loss']])
sw_ev.summ_scalar('pooled/offset_loss', offset_pool_ev.mean())
sw_ev.summ_scalar('stats/offset_loss', metrics['offset_loss'])
iter_time = time.time()-iter_start_time
time_pool_ev.update([iter_time])
sw_ev.summ_scalar('pooled/time_per_batch', time_pool_ev.mean())
sw_ev.summ_scalar('pooled/time_per_el', time_pool_ev.mean()/float(B))
print('%s; step %06d/%d; rtime %.2f; itime %.2f (%.2f ms); loss %.5f; iou_ev %.1f' % (
model_name, global_step, max_iters, read_time, iter_time, 1000*time_pool_ev.mean(),
total_loss.item(), 100*intersection/union))
print('final %s mean iou' % dset, 100*intersection/union)
writer_ev.close()
if __name__ == '__main__':
Fire(main)