forked from AI-liu/Complex-YOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
complexYOLO.py
113 lines (92 loc) · 4.8 KB
/
complexYOLO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.autograd import Variable
def reorg(x):
stride = 2
assert(x.data.dim() == 4)
B = x.data.size(0)
C = x.data.size(1)
H = x.data.size(2)
W = x.data.size(3)
assert(H % stride == 0)
assert(W % stride == 0)
ws = stride
hs = stride
x = x.view(B, C, int(H/hs), hs, int(W/ws), ws).transpose(3,4).contiguous()
x = x.view(B, C, int(H/hs*W/ws), hs*ws).transpose(2,3).contiguous()
x = x.view(B, C, hs*ws, int(H/hs), int(W/ws)).transpose(1,2).contiguous()
x = x.view(B, hs*ws*C, int(H/hs), int(W/ws))
return x
class ComplexYOLO(nn.Module):
def __init__(self):
super(ComplexYOLO, self).__init__()
self.conv_1 = nn.Conv2d(in_channels=3,out_channels=24,kernel_size=3,stride=1,padding=1)
self.bn_1 = nn.BatchNorm2d(num_features=24)
self.pool_1 = nn.MaxPool2d(2)
self.conv_2 = nn.Conv2d(in_channels=24,out_channels=48,kernel_size=3,stride=1,padding=1)
self.bn_2 = nn.BatchNorm2d(num_features=48)
self.pool_2 = nn.MaxPool2d(2)
self.conv_3 = nn.Conv2d(in_channels=48,out_channels=64,kernel_size=3,stride=1,padding=1)
self.bn_3 = nn.BatchNorm2d(num_features=64)
self.conv_4 = nn.Conv2d(in_channels=64,out_channels=32,kernel_size=1,stride=1,padding=0)
self.bn_4 = nn.BatchNorm2d(num_features=32)
self.conv_5 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3,stride=1,padding=1)
self.bn_5 = nn.BatchNorm2d(num_features=64)
self.pool_3 = nn.MaxPool2d(2)
self.conv_6 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=1,padding=1)
self.bn_6 = nn.BatchNorm2d(num_features=128)
self.conv_7 = nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,stride=1,padding=1)
self.bn_7 = nn.BatchNorm2d(num_features=64)
self.conv_8 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=1,padding=1)
self.bn_8 = nn.BatchNorm2d(num_features=128)
self.pool_4 = nn.MaxPool2d(2)
self.conv_9 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3,stride=1,padding=1)
self.bn_9 = nn.BatchNorm2d(num_features=256)
self.conv_10 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size=1,stride=1,padding=0)
self.bn_10 = nn.BatchNorm2d(num_features=256)
self.conv_11 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1)
self.bn_11 = nn.BatchNorm2d(num_features=512)
self.pool_5 = nn.MaxPool2d(2)
self.conv_12 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1)
self.bn_12 = nn.BatchNorm2d(num_features=512)
self.conv_13 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=1,stride=1,padding=0)
self.bn_13 = nn.BatchNorm2d(num_features=512)
self.conv_14 = nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,stride=1,padding=1)
self.bn_14 = nn.BatchNorm2d(num_features=1024)
self.conv_15 = nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1)
self.bn_15 = nn.BatchNorm2d(num_features=1024)
self.conv_16 = nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1)
self.bn_16 = nn.BatchNorm2d(num_features=1024)
self.conv_17 = nn.Conv2d(in_channels=2048,out_channels=1024,kernel_size=3,stride=1,padding=1)
self.bn_17 = nn.BatchNorm2d(num_features=1024)
self.conv_18 = nn.Conv2d(in_channels=1024,out_channels=75,kernel_size=1,stride=1,padding=0)
self.relu = nn.ReLU(inplace=True)
def forward(self,x):
x = self.relu(self.bn_1(self.conv_1(x)))
x = self.pool_1(x)
x = self.relu(self.bn_2(self.conv_2(x)))
x = self.pool_2(x)
x = self.relu(self.bn_3(self.conv_3(x)))
x = self.relu(self.bn_4(self.conv_4(x)))
x = self.relu(self.bn_5(self.conv_5(x)))
x = self.pool_3(x)
x = self.relu(self.bn_6(self.conv_6(x)))
x = self.relu(self.bn_7(self.conv_7(x)))
x = self.relu(self.bn_8(self.conv_8(x)))
x = self.pool_4(x)
x = self.relu(self.bn_9(self.conv_9(x)))
route_1 = x # 12 layer
reorg_result = reorg(route_1)
x = self.relu(self.bn_10(self.conv_10(x)))
x = self.relu(self.bn_11(self.conv_11(x)))
x = self.pool_5(x)
x = self.relu(self.bn_12(self.conv_12(x)))
x = self.relu(self.bn_13(self.conv_13(x)))
x = self.relu(self.bn_14(self.conv_14(x)))
x = self.relu(self.bn_15(self.conv_15(x)))
x = self.relu(self.bn_16(self.conv_16(x)))
x = torch.cat((reorg_result,x),1)
x = self.relu(self.bn_17(self.conv_17(x)))
x = self.conv_18(x)
return x