-
Notifications
You must be signed in to change notification settings - Fork 2
/
extract_features.py
72 lines (59 loc) · 3.11 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
from qualitylib.feature_extractor import get_fex
from qualitylib.tools import import_python_file
from funque_plus.feature_extractors import *
from funque_plus.utils import get_standard
import argparse
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description='Code to extract features from video pair')
parser.add_argument('--ref_video', help='Path to reference video', type=str)
parser.add_argument('--dis_video', help='Path to distorted video', type=str)
parser.add_argument('--fex_name', help='Name of feature extractor.', type=str)
parser.add_argument('--fex_version', help='Version string of feature extractor. (Optional)', type=str, default=None)
parser.add_argument('--fex_args', help='Path to Python file containing arguments to be passed to the feature extractor. (Optional)', type=str, default=None)
parser.add_argument('--ref_standard', help='Standard to which the reference video conforms', type=str, default='sRGB')
parser.add_argument('--dis_standard', help='Standard to which the distorted video conforms', type=str, default='sRGB')
parser.add_argument('--width', help='Width of input video. Required for raw YUV videos.', type=int, default=None)
parser.add_argument('--height', help='Width of input video. Required for raw YUV videos.', type=int, default=None)
parser.add_argument('--framerate', help='Framerate of input video in FPS. Required for raw YUV videos.', type=int, default=None)
parser.add_argument('--out_file', help='Path to output MAT file containing results. (Optional)', type=str, default=None)
return parser
def main():
args = get_parser().parse_args()
asset_dict = {}
asset_dict['dataset_name'] = None
asset_dict['ref_path'] = args.ref_video
asset_dict['dis_path'] = args.dis_video
asset_dict['ref_standard'] = get_standard(args.ref_standard)
asset_dict['dis_standard'] = get_standard(args.dis_standard)
asset_dict['content_id'] = 0
asset_dict['asset_id'] = 0
asset_dict['score'] = None
asset_dict['width'] = args.width
asset_dict['height'] = args.height
asset_dict['fps'] = args.framerate
FexClass = get_fex(args.fex_name, args.fex_version)
fex_args = []
fex_kwargs = {}
if args.fex_args is not None:
mod = import_python_file(args.fex_args)
if hasattr(mod, 'args'):
fex_args.extend(mod.args)
if hasattr(mod, 'kwargs'):
fex_kwargs.update(mod.kwargs)
fex = FexClass(*fex_args, use_cache=False, **fex_kwargs)
result = fex(asset_dict)
print('Computed features:')
if len(result.feat_names) == len(result.agg_feats):
for feat_name, feat_val in zip(result.feat_names.flatten(), result.agg_feats.flatten()):
print(f'{feat_name}: {feat_val:.4f}')
else:
for feat_val in result.agg_feats.flatten():
print(f'{feat_val:.4f}')
if args.out_file is not None:
ext = os.path.splitext(args.out_file)[-1]
if ext != 'mat':
raise OSError(f'Invalid extension {ext}, expected \'mat\'')
result.save(args.out_file)
if __name__ == '__main__':
main()