forked from smaranjitghose/ArtCV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
glitch_art.py
70 lines (64 loc) · 2.39 KB
/
glitch_art.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import argparse
from PIL import Image
import numpy as np
import math
from tqdm import tqdm
# generating a random number for dividing the image's height
def gen_divisors(n):
for i in range(2, math.floor(math.sqrt(n))):
if n % i == 0:
yield i
# generating the extedned padded image
def pad_to_square(imgobj):
"""Pad to the nearest 100th"""
square = Image.new('RGB', ((imgobj.width // 100 + 1) * 100,(imgobj.height // 100 + 1) * 100), (0, 0, 0))
# pasting the original image object over the extended black padded background and returning it
square.paste(imgobj, imgobj.getbbox())
return square
# the function returns the glitched image with given step size
def pixel_sort(imgobj, step_size=8):
# padding the image to transform into square
padded = pad_to_square(imgobj)
# image to array
data = np.array(padded)
# dividing the image into stripes
stripes = np.split(data, data.shape[0] // step_size, axis=0)
sorted_data = []
# sort by rows
for stripe in tqdm(stripes):
sorted_data.append(np.sort(stripe, axis=0))
sorted_arr = np.array(sorted_data)
# shaping the sorted array into the padded image shape
sorted_arr = sorted_arr.reshape(padded.height, padded.width, 3)
# remove padding
sorted_arr = sorted_arr[:imgobj.height, :imgobj.width, :]
# generating image from array
return Image.fromarray(sorted_arr)
def glitch_image(fname):
"""
Return a glitched image object
"""
orginal, step_size = None, None
original = Image.open(fname)
# randomly generate a step size that divides the image's height
divisors = list(gen_divisors(original.height))
# randomly choosing the index for divisors
idx = np.random.choice(len(divisors))
step_size = divisors[idx]
try:
return pixel_sort(original, step_size=step_size)
except:
print('Dimension errors processing ' + fname + ' Please try again.')
return None
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--file', type=str)
args = parser.parse_args()
glitched = glitch_image(args.file)
if glitched is not None:
glitched.show()
dirname, fname = os.path.split(args.file)
glitched.save(dirname + '/glitched_' + fname)
if __name__ == '__main__':
main()