-
Notifications
You must be signed in to change notification settings - Fork 0
/
orals-backup.tex
513 lines (398 loc) · 19.9 KB
/
orals-backup.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
\documentclass{article}
% \usepackage{times}
\usepackage{mathptmx}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{calc}
\usepackage{units}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{subdepth}
\usepackage{cite}
\usepackage{url}
\usepackage{notoccite}
\usepackage{nag}
\title{Newtonian approximation in Causal Dynamical Triangulations}
\author{Adam Getchell}
\date{}
\begin{document}
\maketitle
\tableofcontents
\section{Motivation}
We would like to address the following issues:
\begin{itemize}
\item Can we recover $F=-\frac{Gm_{1}m_{2}}{r^{2}}$ from CDT?
\item Do we have a sensible notion of \textquotedblleft{}mass\textquotedblright{}
in CDT?
\item Semi-classical approximations not yet completely convincing \cite{trzesniewski2011analysis}
\end{itemize}
In order to do so, we look for a solution with the following properties:
\begin{itemize}
\item Separation between two objects $\gg$ Schwarzschild radius
\item Self-fields are not excluded
\item Object size $\ll$ separation
\end{itemize}
Following previous work\cite{katz1967derivation}, the plan of attack is:
\begin{enumerate}
\item Find the most general axisymmetric (Weyl) metric
\item Impose boundary conditions
\item Find an expression for the "strut" of stress energy between two masses
\item Integrate $T_{zz}$ around the "strut"
\item Recover $F=-\frac{Gm_{1}m_{2}}{r^{2}}$
\end{enumerate}
\subsection{Newton's Law of Gravitation from General Relativity}
We begin by deriving the general static axisymmetric (Weyl) metric.
Following Synge\cite{synge_relativity}, we have a set of components $\{x^0,x^1,x^2,x^3\}$
where $x^{0}$ is the time coordinate, $x^{1}$,$x^{2}$ are any two coordinates in the meridianal (vertical)
plane containing the z-axis, and $x^{3}$ is the angular component about the z-axis.
Imposing the static condition implies that our metric is independent of $x^{0}$, and axisymmetry implies that $x^{3}\rightarrow x^{3}+2\pi$.
However, this does not sufficiently restrict possible solutions. We also assume time and axis angle reversal invariance, i.e. $t = -t$ and $\phi = -\phi$. Consequently:
\begin{equation}
g_{\mu\nu}=f\left(x^{1},x^{2}\right)
\end{equation}
Then we must have:
\begin{equation}
ds^{2}=g_{00}\left(dx^{0}\right)^{2}-\Phi -g_{33}\left(dx^{3}\right)^{2}\label{eq:positive-definite-quadratic-differential}
\end{equation}
where
\begin{equation}
\Phi=g_{11}\left(dx^{1}\right)^{2}+2g_{12}dx^{1}dx^{2}+g_{22}\left(dx^{2}\right)^{2}
\end{equation}
For positive definite quadratic differential forms of two variables
such as explicit values of $g_{11}$,$g_{12}$, and $g_{22}$ from
$\Phi$ in Equation (\ref{eq:positive-definite-quadratic-differential}),
one can make a real, single-valued, continuous transformation from
$x^{1}$ and $x^{2}$ to $u$ and $v$ by:
\begin{equation}
x^{1}=x^{1}(u,v),\, x^{2}=x^{2}(u,v)
\end{equation}
where $J=\left[\nicefrac{\partial(x^{1},x^{2})}{\partial(u,v)}\right]\neq0$
such that:
\begin{equation}
g_{11}\left(dx^{1}\right)^{2}+2g_{12}dx^{1}dx^{2}+g_{22}\left(dx^{2}\right)^{2}=\beta^{2}\left(du^{2}+dv^{2}\right)
\end{equation}
Since $x^{1}$, $x^2$, $u$, and $v$ are all arbitrary, Equation (\ref{eq:positive-definite-quadratic-differential}) becomes:
\begin{equation}
ds^{2}=\alpha^{2} \left(dx^{0}\right)^{2}-\beta^{2}\left(\left(dx^{1}\right)^{2}+\left(dx^{2}\right)^{2}\right)-\gamma^{2}\left(dx^{3}\right)^{2}\label{eq:generic-axisymmetric-static-metric}
\end{equation}
Explicitly, we then have the metric:
\begin{equation}
g_{\mu\nu}=\left(\begin{array}{cccc}
\alpha^{2}\left(dx^{0}\right)^{2} & 0 & 0 & 0\\
0 & -\beta^{2}\left(dx^{1}\right)^{2} & 0 & 0\\
0 & 0 & -\beta^{2}\left(dx^{2}\right)^{2} & 0\\
0 & 0 & 0 & -\gamma^{2}\left(dx^{3}\right)^{2}
\end{array}\right)\label{eq:general-axisymmetric-static-matrix-metric}
\end{equation}
The definition of the Christoffel connection is: \cite{carroll2003spacetime}
\begin{equation}
\Gamma_{\mu\nu}^{\lambda}=\frac{1}{2}g^{\lambda\sigma}\left(\partial_{\mu}g_{\nu\sigma}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\mu\nu}\right)
\end{equation}
The non-zero Christoffel connections are:
\begin{equation}
\begin{array}{l}
\Gamma_{01}^{0}=\nicefrac{\alpha_{1}}{\alpha}\\
\Gamma_{02}^{0}=\nicefrac{\alpha_{2}}{\alpha}\\
\Gamma_{00}^{1}=\nicefrac{\alpha \alpha_{1}}{\beta^{2}}\\
\Gamma_{11}^{1}=\nicefrac{\beta_{1}}{\beta}\\
\Gamma_{12}^{1}=\nicefrac{\beta_{2}}{\beta}\\
\Gamma_{22}^{1}=-\nicefrac{\beta_{1}}{\beta}\\
\Gamma_{33}^{1}=-\nicefrac{\gamma\gamma_{1}}{\beta^{2}}\\
\Gamma_{00}^{2}=\nicefrac{\alpha\alpha_{2}}{\beta^{2}}\\
\Gamma_{11}^{2}=-\nicefrac{\beta_{2}}{\beta}\\
\Gamma_{12}^{2}=\nicefrac{\beta_{1}}{\beta}\\
\Gamma_{22}^{2}=\nicefrac{\beta_{2}}{\beta}\\
\Gamma_{33}^{2}=-\nicefrac{\gamma\gamma_{2}}{\beta^{2}}\\
\Gamma_{13}^{3}=\nicefrac{\gamma_{1}}{\gamma}\\
\Gamma_{23}^{3}=\nicefrac{\gamma_{2}}{\gamma}\\
\end{array}
\end{equation}
Where for convenience subscripts denote partial derivatives, i.e. $\alpha_{1}=\nicefrac{\partial\alpha}{\partial x^{1}}$
The components of the Riemann tensor are given by:
\begin{equation}
R_{\sigma\mu\nu}^{\rho}=\partial_{\mu}\Gamma_{\nu\sigma}^{\rho}-\partial_{\nu}\Gamma_{\mu\sigma}^{\rho}+\Gamma_{\mu\lambda}^{\rho}\Gamma_{\nu\sigma}^{\lambda}-\Gamma_{\nu\lambda}^{\rho}\Gamma_{\mu\sigma}^{\lambda}
\end{equation}
Using Synge's substitutions:
\begin{equation}
\begin{array}{c}
01\longleftrightarrow1\\
02\longleftrightarrow2\\
03\longleftrightarrow3\\
12\longleftrightarrow4\\
23\longleftrightarrow5\\
31\longleftrightarrow6\\
\end{array}
\end{equation}
The 20 independent components of the 4D Rieman tensor are given by:
\begin{equation}
\begin{array}{cccccc}
R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\ & R_{22} & R_{23} & R_{24} & R_{25} & R_{26} \\ & & R_{33} & R_{34} & R_{35} & R_{36} \\ & & & R_{44} & R_{45} & R_{46} \\ & & & & R_{55} & R_{56} \\ & & & & & R_{66}
\end{array}
\end{equation}
Subject to:
\begin{equation}
R_{15} + R_{26} + R_{34} = 0
\end{equation}
Which is the equivalent of:
\begin{equation}
R_{\rho[\sigma\mu\nu]}=0
\end{equation}
The non-zero components of the Riemann tensor are:
\begin{equation}
\begin{array}{l}
R_{11}\rightarrow R_{101}^{0}=-\left(\frac{\alpha_{1}}{\alpha}\right)_{1}+\frac{\alpha_{1}\beta_{1}}{\alpha\beta}-\frac{\alpha_{2}\beta_{2}}{\alpha\beta}-\left(\frac{\alpha_{1}}{\alpha}\right)^{2}\\
R_{12}\rightarrow R_{102}^{0}=-\left(\frac{\alpha_{1}}{\alpha}\right)_{2}+\frac{\alpha_{1}\beta_{2}}{\alpha\beta}+\frac{\alpha_{2}\beta_{1}}{\alpha\beta}-\frac{\alpha_{2}\alpha_{1}}{\alpha^{2}}\\
R_{22}\rightarrow R_{202}^{0}=-\left(\frac{\alpha_{2}}{\alpha}\right)_{2}-\frac{\alpha_{1}\beta_{1}}{\alpha\beta}+\frac{\alpha_{2}\beta_{2}}{\alpha\beta}-\left(\frac{\alpha_{2}}{\alpha}\right)^{2}\\
R_{33}\rightarrow R_{303}^{0}=-\frac{\gamma}{\alpha\beta^{2}}\left(\alpha_{1}\gamma_{1}+\alpha_{2}\gamma_{2}\right)\\
R_{36}\rightarrow R_{331}^{0}=\frac{\gamma}{\alpha\beta^{2}}\left(\alpha_{1}\gamma_{1}\right)\\
R_{44}\rightarrow R_{212}^{1}=-\left(\frac{\beta_{1}}{\beta}\right)_{1}-\left(\frac{\beta_{2}}{\beta}\right)_{2}\\
R_{55}\rightarrow R_{323}^{2}=-\frac{\gamma}{\beta^{2}}\left(\frac{\beta_{2}\gamma_{2}}{\beta}-\gamma_{22}-\frac{\beta_{1}\gamma_{1}}{\beta}\right)\\
R_{56}\rightarrow R_{331}^{2}=-\left(\frac{\gamma\gamma_{2}}{\beta^{2}}\right)_{1}-\frac{\gamma}{\beta^{2}}\left(\frac{\gamma_{1}\gamma_{2}}{\gamma}+\frac{\gamma_{1}\beta_{2}}{\beta}-\frac{\beta_{1}\gamma_{2}}{\beta}\right)\\
R_{66}\rightarrow R_{131}^{3}=-\frac{\gamma_{11}}{\gamma}+\frac{\beta_{1}\gamma_{1}}{\beta\gamma}-\frac{\beta_{2}\gamma_{2}}{\beta\gamma}\\
\end{array}
\end{equation}
The Ricci tensor is given by:
\begin{equation}
R_{\mu\nu}=R_{\mu\lambda\nu}^{\lambda}
\end{equation}
The Ricci tensor components are:
\begin{equation}
\begin{array}{l}
R_{00}=\frac{\alpha}{\beta^{2}}\left(\alpha_{11}+\alpha_{22}+\frac{1}{\gamma}\left(\alpha_{1}\gamma_{1}+\alpha_{2}\gamma_{2}\right)\right)\\
R_{11}=-\frac{\alpha_{11}}{\alpha}-\frac{\gamma_{11}}{\gamma}-\left(\frac{\beta_{1}}{\beta}\right)_{1}-\left(\frac{\beta_{2}}{\beta}\right)_{2}-\frac{\beta_{2}}{\beta}\left(\frac{\alpha_{2}}{\alpha}+\frac{\gamma_{2}}{\gamma}\right)+\frac{\beta_{1}}{\beta}\left(\frac{\alpha_{1}}{\alpha}+\frac{\gamma_{1}}{\gamma}\right)\\
R_{12}=-\frac{\alpha_{12}}{\alpha}-\frac{\gamma_{12}}{\gamma}+\frac{\beta_{1}}{\beta}\left(\frac{\alpha_{2}}{\alpha}+\frac{\gamma_{2}}{\gamma}\right)+\frac{\beta_{2}}{\beta}\left(\frac{\alpha_{1}}{\alpha}+\frac{\gamma_{1}}{\gamma}\right)\\
R_{22}=-\left(\frac{\beta_{1}}{\beta}\right)_{1}-\left(\frac{\beta_{2}}{\beta}\right)_{2}-\frac{\alpha_{22}}{\alpha}-\frac{\gamma_{22}}{\gamma}-\frac{\beta_{1}}{\beta}\left(\frac{\alpha_{1}}{\alpha}+\frac{\gamma_{1}}{\gamma}\right)+\frac{\beta_{2}}{\beta}\left(\frac{\alpha_{2}}{\alpha}+\frac{\gamma_{2}}{\gamma}\right)\\
R_{33}=-\frac{\gamma}{\beta^{2}}\left(\gamma_{11}+\gamma_{22}+\frac{1}{\alpha}\left(\alpha_{1}\gamma_{1}+\alpha_{2}\gamma_{2}\right)\right)
\end{array}
\end{equation}
Now prior insight shows that:
\begin{equation}
R^{0}_{0}+R^{3}_{3}=g^{00}R_{00}+g^{33}R_{33}=\frac{1}{\alpha^{2}}R_{00}-\frac{1}{\gamma^{2}}R_{33}\label{eq:prior-insight}
\end{equation}
Letting
\begin{equation}
\Delta=\left(\partial_{1}+\partial_{2}\right)^{2}\label{eq:Delta}
\end{equation}
And substituting values into Equation (\ref{eq:prior-insight}) we get:
\begin{equation}
R^{0}_{0}+R^{3}_{3}=\frac{1}{\alpha\beta^{2}\gamma}\Delta\left(\alpha\gamma\right)\label{eq:prior-insight-2}
\end{equation}
Now in the case where there is no matter we have:
\begin{equation}
R_{\mu\nu}=0
\end{equation}
Which from Equation (\ref{eq:prior-insight-2}) implies that:
\begin{equation}
\Delta\left(\alpha\gamma\right)=0
\end{equation}
Recalling Equation (\ref{eq:Delta}) we have a harmonic function:
\begin{equation}
\alpha\gamma=r\left(x^{1},x^{2}\right)\label{eq:alpha-in-terms-of-gamma}
\end{equation}
To put this into standard form, we can make the transform:
\begin{equation}
\left(x^{1},x^{2}\right)\rightarrow\left(r,z\right)
\end{equation}
Then we can write:
\begin{equation}
\beta^{2}\left(\left(dx^{1}\right)^{2}+\left(dx^{2}\right)^{2}\right)=B\left(dr^{2}+dz^{2}\right)
\end{equation}
Using Equation (\ref{eq:alpha-in-terms-of-gamma}) and the condition that:
\begin{equation}
R^{0}_{0}+R^{3}_{3}=0
\end{equation}
We can rewrite Equation (\ref{eq:generic-axisymmetric-static-metric}) as:
\begin{equation}
ds^{2}=\alpha^{2}dt^{2}-B\left(r,z\right)\left(dr^{2}+dz^{2}\right)-\frac{r^{2}}{\alpha^{2}}d\phi^{2}
\end{equation}
Letting
\begin{equation}
\begin{array}{ccc}
\alpha=e^{\lambda} & B=e^{\nu-\lambda} & \gamma=re^{-\lambda}
\end{array}
\end{equation}
We finally get the Weyl metric:
\begin{equation}
ds^{2}=e^{2\lambda}dt^{2}-e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right)-r^{2}e^{-2\lambda}d\phi^{2}
\end{equation}
And the Ricci scalar given by:
\begin{equation}
R=R_{\mu}^{\mu}=g^{\mu\nu}R_{\mu\nu}
\end{equation}
Is:
\begin{equation}
R=R_{\mu}^{\mu}=g^{\mu\nu}R_{\mu\nu}
\end{equation}
Finally we have the Einstein tensor:
\begin{equation}
G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}
\end{equation}
And solving for the Einstein Field Equations in a vacuum (i.e. $G_{\mu\nu}=0$)
we get:
\begin{equation}
G_{00}=-e^{2(\nu-m)}\left(\left(\partial_{v}n\right)^{2}+\partial_{v}^{2}m+\partial_{v}^{2}n+\left(\partial_{u}n\right)^{2}+\partial_{u}^{2}m+\partial_{u}^{2}n\right)=0\label{eq:G00}
\end{equation}
\begin{equation}
\begin{split}
G_{11}=-\partial_{v}m\partial_{v}n+\left(\partial_{v}n\right)^{2}-\partial_{v}m\partial_{v}\nu+\partial_{v}n\partial_{v}\nu+\left(\partial_{v}\nu\right)^{2}\\
+\partial_{v}^{2}n+\partial_{v}^{2}\nu+\partial_{u}m\partial_{u}n+\partial_{u}m\partial_{u}\nu+\partial_{u}n\partial_{u}\nu=0
\end{split}
\end{equation}
\begin{equation}
\begin{split}
G_{21}=\partial_{v}n\partial_{u}m+\partial_{v}\nu\partial_{u}m+\partial_{v}m\partial_{u}n-\partial_{v}n\partial_{u}n+\partial_{v}m\partial_{u}\nu\\
-\partial_{v}\nu\partial_{u}\nu-\partial_{u}\partial_{v}n-\partial_{u}\partial_{v}\nu=0
\end{split}
\end{equation}
\begin{equation}
\begin{split}
G_{22}=\partial_{v}m\partial_{v}n+\partial_{v}m\partial_{v}\nu+\partial_{v}n\partial_{v}\nu-\partial_{u}m\partial_{u}n+\partial_{u}m\partial_{u}\nu\\
+\left(\partial_{u}n\right)^{2}-\partial_{u}m\partial_{u}\nu+\partial_{u}n\partial_{u}\nu+\left(\partial_{u}\nu\right)^{2}+\partial_{u}^{2}n+\partial_{u}^{2}\nu=0
\end{split}
\end{equation}
\begin{equation}
G_{33}=e^{2(n-m)}\left(\left(\partial_{v}\nu\right)^{2}+\partial_{v}^{2}m+\partial_{v}^{2}\nu+\left(\partial_{u}\nu\right)^{2}+\partial_{u}^{2}m+\partial_{u}^{2}\nu\right)=0\label{eq:G33}
\end{equation}
Let:
\begin{equation}
\chi=n+\nu
\end{equation}
Adding together Eqns. (\ref{eq:G00}) and (\ref{eq:G33}) gives:
\begin{equation}
\partial_{u}^{2}\chi+\partial_{v}^{2}\chi+\left(\partial_{u}\chi\right)^{2}+\left(\partial_{v}\chi\right)^{2}=0
\end{equation}
Setting:
\begin{equation}
\Phi=e^{\chi}=e^{n+\nu}
\end{equation}
We recover Laplace's equation in the $uv$-plane:
\begin{equation}
\partial_{u}^{2}\Phi+\partial_{v}^{2}\Phi=0
\end{equation}
The remaining equations are used for boundary conditions on Laplace's
equation.
In general, for a metric of the form:
\begin{equation}
ds^{2}=e^{2\psi}dt^{2}-e^{-2\psi}\left[e^{2\omega}\left(dr^{2}+dz^{2}\right)+r^{2}d\phi^{2}\right]\label{eq:chazy-curzon-metric}
\end{equation}
We have general solutions:
\begin{equation}
\nabla^{2}\psi=\partial_{r}^{2}\psi+\frac{\partial_{r}\psi}{r}+\partial_{z}^{2}\psi\label{eq:chazy-laplace}
\end{equation}
\begin{equation}
d\omega\left[\psi\right]=r\left[\left(\left(\partial_{r}\psi\right)^{2}-\left(\partial_{z}\psi\right)^{2}\right)dr+2\partial_{r}\psi\partial_{z}\psi dz\right]\label{eq:chazy-laplace-bc}
\end{equation}
Note that Eq(\ref{eq:generic-axisymmetric-static-metric}) can be
recovered from Eq(\ref{eq:chazy-curzon-metric}) by substituting $\psi=\nu$,$m=\omega-\psi$,
and $e^{2n}=r^{2}e^{-2\psi}$.
The solution of Eq(\ref{eq:chazy-laplace}) and Eq(\ref{eq:chazy-laplace-bc})for
a point particle of mass m at $z=z_{0}$ is given by (explain ``point''
in Schwarzschild solution, check for singularities):
\begin{equation}
\psi=-\frac{m}{R}
\end{equation}
\begin{equation}
\omega=-\frac{m^{2}r^{2}}{2R^{4}}
\end{equation}
\begin{equation}
R=\sqrt{r^{2}+\left(z-z_{0}\right)^{2}}
\end{equation}
What is meant by ``point'' particle? To find out, let's transform
to the Schwarzschild equation:
\begin{equation}
ds^{2}=\left(1-\frac{2GM}{r}\right)dt^{2}-\frac{1}{\left(1-\frac{2GM}{r}\right)}dr^{2}-r^{2}\left(d\theta^{2}+\sin^{2}\theta d\phi^{2}\right)
\end{equation}
using: (TODO: fill in transforms)
For n point particles we have \cite{letelier1997superposition}:
\begin{equation}
\psi=-\sum_{j=1}^{N}\frac{m_{j}}{R_{j}}
\end{equation}
\begin{equation}
\omega=-\frac{r^{2}}{2}\sum_{j}\frac{m_{j}^{2}}{R_{j}^{4}}+\sum_{j\neq k}\frac{m_{j}m_{k}}{\left(z_{j}-z_{k}\right)^{2}}\left[\frac{r^{2}+\left(z-z_{j}\right)\left(z-z_{k}\right)}{R_{j}R_{k}}-1\right]
\end{equation}
\begin{equation}
R=\sqrt{r^{2}+\left(z-z_{j}\right)^{2}}
\end{equation}
\subsection{Additional issues}
\section{Applications to Causal Dynamical Triangulations}
\subsection{Preliminaries}
A simplex is a generalization of a triangle to arbitrary dimension. For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4-simplex is a pentachoron. Topologically, an n-simplex is equivalent to an n-ball; that is, an n-dimensional manifold with boundary.
An n-dimensional simplex has $n+1$ points or \emph{vertices}. A convex hull, or minimal convex set of these points is the \emph{m-face} of the \emph{n-simplex}. Thus, a vertex is a \emph{0-face}, and an edge between two vertices is the \emph{1-face}. We can extend this notation to \emph{2-faces} (triangles), \emph{3-faces} (tetrahedrons), \emph{4-faces} (pentachorons). We will not, at present, consider simplices of dimension higher than $n=4$, but this generalization gives us a useful way to reason about higher dimensional spaces.
The number of \emph{m-faces} on our \emph{n-simplex} is given by the binomial coefficient as:
\begin{equation}
\left(\begin{array}{c}n+1\\m+1\end{array}\right)
\end{equation}
Thus, our pentachoron has 5 vertices, 10 edges, 10 faces (triangles), 5 cells (tetrahedrons), and 1 4-face, itself.
A given face can be shared by another simplex. By requiring that \cite{weisstein1}:
\begin{itemize}
\item Every face of a simplex \emph{K} is in \emph{K}, and
\item The intersection of any two simplices of K is a face of each of them
\end{itemize}
We build up a useful structure called a simplicial complex. Informally, this is a space with a triangulation. Formally, simplicial complexes have only been proven for spaces of dimension $d\le3$. A simplicial complex has a well-defined homology (simplicial homology) which is easy to compute.
\subsection{Code Correctness}
Implementing CDT in computer code is non-trivial. As a first significant step, an independent implementation of CDT has given similar results to the original work \cite{kommu2011}. We would like to build on Kommu's implementation using Literate Programming \cite{knuth_literate_1984} coupled with Test Driven Development specific to the programming language used \cite{rathore_clojure_2011}. This provides for the codebase to be better understood by researchers wishing to replicate results or expand the capabilities of the code, and provides inherent integrity checks apart from "it produced what we expected". Such methodology will be critical to expanding the performance of the code by using such techniques as parallel processing and highly optimized algorithms. The adage of "Make it work, make it right, make it fast" applies.
The first building block of the code are the simplexes themselves. Using the known properties of simplicial complexes, we can provide for a series of checks that validate that simplices are being constructed correctly. Such checks will provide useful test cases when the underlying implementation of simplex data structures and moves are changed.
\subsection{Data structures}
\subsection{Issues}
\begin{itemize}
\item Extrinsic Curvature \emph{(To Do)}
\item Imposing conditions of separation
\item Checking that separation >\textcompwordmark{}> Schwarzschild radius
\item Imposing cylindrical symmetry
\end{itemize}
\subsection{CDT Algorithm}
\emph{(To Do: insert graphics)}
\begin{itemize}
\item {[}(2,8): (1,4) + (4,1) $\rightarrow$8 simplices{]} + inverse = +2
moves
\item {[}(4,6): ()+()+()+()$\rightarrow$6 simplices{]} + inverse = +2 moves
\item {[}(2,4): two varieties of ()+()$\rightarrow$4 simplices{]}, self-inverse
= +2 moves
\item {[}(3,3): two varieties of ()+()+()$\rightarrow$3 simplices{]} +
inverse = +4 moves\end{itemize}
\begin{description}
\item [{10}] moves in all (\emph{Check!)}
\end{description}
\includegraphics[scale=0.35]{Initialization}
Dijkstra's Algorithm \cite{cormen2001introduction}
Solves single-source shortest-path problems on weighted, directed
graph G=(V,E) of non-negative edge lengths
\begin{itemize}
\item Greedy algorithm
\item Proven to be correct
\item Complexity
\begin{itemize}
\item $O(V^{2})$ naively using adjacency list
\item $O(E\lg V)$ using priority queue iff all vertices reachable from
source
\item $O(V\lg V+E)$ using Fibonacci heap (more relaxation calls than extract-min
calls)
\end{itemize}
\item Issue: confine edge length algorithm to particular time-slice
\item Solution: Store Fibonacci heap of simplices per time-slice
\begin{itemize}
\item Each simplex has 5 neighbors, so more compact than adjacency matrix
\end{itemize}
\begin{itemize}
\item How to deal with moves affecting original ``mass'' simplices
\item How to create a 4d cylinder of height z=d
\item Verify Markov chain for initialization is ergodic
\item Calculate <d>
\end{itemize}
\end{itemize}
\section{Summary}
\begin{itemize}
\item Insert mass equivalence via extrinsic curvature
\item Insert strut by enforcing separation distance
\item Filter moves which alter separation distance via Markov chain
\item Outlook
\begin{itemize}
\item Write code!
\item Check Extrinsic Curvature
\item Compare results
\end{itemize}
\end{itemize}
\bibliographystyle{ieeetr}
\bibliography{cdt-newtonian-limit-biblio}
\end{document}