Skip to content

aclorena/beta3_IRT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

beta3_IRT

Source code of the paper $\beta^3$-IRT: A New Item Response Model and its Applications

Requirements

The source code was originally developed on:

  1. Python 2.7.12
  2. Tensorflow 1.2.0
  3. Edward 1.3.4

It was also tested on:

  1. Python 3.6.6
  2. Tensorflow 1.10.0
  3. Edward 1.3.5

which requires manually fixing the compatible issues of Tensorflow (> 1.2.0) in Edward and install Edward from the source.

Usage

There are two steps to run experiments:

  1. Train classifiers and generate response data for the $\beta^3$ IRT model, for example, run the following command:

    python gen_irt_data.py --dataset moons --data_size 400 --noise_fraction 0.2 --seed 42
    
  2. The first step will automatically generate data files for the second step, and the file named with "irt_data_*.csv" is the input parameter of the command to run $\beta^3$ IRT model, i.e.:

    python betairt_test.py --IRT_dfile irt_data_moons_s400_f20_sd42_m12.csv --a_prior_mean 1. --a_prior_std 1.  
    

Citing $\beta^3$-IRT

Biblatex entry:

@inproceedings{chen2019beta,
  title={$\beta^3$-IRT: A New Item Response Model and its Applications},
  author={Chen, Yu and Filho, Telmo Silva and Prud{\^e}ncio, Ricardo BC and Diethe, Tom and Flach, Peter},
  booktitle={Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) },
  year={2019}
  }

About

Source code of $\beta^3$-IRT(https://arxiv.org/abs/1903.04016)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%