Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[QUESTION] Chapter 10 RandomizedSearchCV returned best model having worse performance. #625

Open
michaljurzak1 opened this issue Sep 14, 2023 · 1 comment

Comments

@michaljurzak1
Copy link

michaljurzak1 commented Sep 14, 2023

Notebook: 10_neural_nets_with_keras.ipynb
Cell: 102

Problem:
After RandomizedSearchCV using exactly the same hyperparameters as in the book I encounter the issue that it returns worse model.

Most important:

model = rnd_search_cv.best_estimator_.model()
model.evaluate(X_test, y_test)
162/162 [==============================] - 0s 1ms/step - loss: 4.5746
4.57464599609375

Expected: around the best observed loss while RandomizedSearchCV
e.g.

Epoch 96/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2351 - val_loss: 0.2832

To Reproduce

def build_model(n_hidden=1, n_neurons=30, learning_rate=3e-3, input_shape=[8]):
    model = keras.models.Sequential()
    options = {"input_shape": input_shape}
    for layer in range(n_hidden):
        model.add(keras.layers.Dense(n_neurons, activation="relu", **options))
        options={}
    model.add(keras.layers.Dense(1, **options))
    optimizer = keras.optimizers.SGD(learning_rate=learning_rate)
    model.compile(loss='mse', optimizer=optimizer)
    return model

Now it is not possible to get keras.wrappers.KerasRegression, hence:

from scikeras.wrappers import KerasRegressor
keras_reg = KerasRegressor(model=build_model, learning_rate=None, n_hidden=None, n_neurons=None)
from scipy.stats import reciprocal
from sklearn.model_selection import RandomizedSearchCV

param_distribs = {
"n_hidden": [0, 1, 2, 3],
"n_neurons": np.arange(1, 100),
"learning_rate": reciprocal(3e-4, 3e-2),
}

rnd_search_cv = RandomizedSearchCV(keras_reg, param_distribs, n_iter=10, cv=3)
rnd_search_cv.fit(X_train, y_train, epochs=100,
                validation_data=(X_valid, y_valid),
                callbacks=[keras.callbacks.EarlyStopping(patience=10)])

A few of last lines:

363/363 [==============================] - 1s 2ms/step - loss: 0.2377 - val_loss: 0.3169
Epoch 93/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2348 - val_loss: 0.2939
Epoch 94/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2333 - val_loss: 0.2923
Epoch 95/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2353 - val_loss: 0.2991
Epoch 96/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2351 - val_loss: 0.2832
Epoch 97/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2326 - val_loss: 0.2875
Epoch 98/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2324 - val_loss: 0.2996
Epoch 99/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2308 - val_loss: 0.3063
Epoch 100/100
363/363 [==============================] - 1s 2ms/step - loss: 0.2318 - val_loss: 0.2876

Best params:

rnd_search_cv.best_params_, rnd_search_cv.best_score_
({'learning_rate': 0.009847435984689484, 'n_hidden': 3, 'n_neurons': 74},
 0.7897341518291179)

In the book:

  • learning_rate=0.0058 (but differences expected)
  • score = -0.32039451599121094

Important debug information:

model.summary()
Model: "sequential_98"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 dense_279 (Dense)           (None, 30)                270       
                                                                 
 dense_280 (Dense)           (None, 1)                 31        
                                                                 
=================================================================
Total params: 301 (1.18 KB)
Trainable params: 301 (1.18 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

Expected behavior
The best model found in the RandomizedSearchCV does not seem to be applied for the best model and the model is fixed

Versions:

  • Windows 11
  • Python: 3.11.4
  • TensorFlow: 2.13.0
  • keras: 2.13.1
  • Scikit-Learn: 1.2.2
  • scikeras: 0.11.0
@michaljurzak1
Copy link
Author

A simple workaround I found is just use the best hyperparameters in the build_model() function:

md = build_model(**rnd_search_cv.best_params_)

md.fit(X_train, y_train, epochs=100,
    validation_data=(X_valid, y_valid),
    callbacks=[keras.callbacks.EarlyStopping(patience=10)])

md.evaluate(X_test, y_test)
162/162 [==============================] - 0s 1ms/step - loss: 0.3111
0.3110610246658325

This solution seems more like in book, however it is very inconvenient.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant