-
Notifications
You must be signed in to change notification settings - Fork 10
/
demo_test_autocomp.py
728 lines (592 loc) · 20.8 KB
/
demo_test_autocomp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
#%%
try:
%load_ext autoreload
%autoreload 2
print 1
except:
print 'NOT IPYTHON'
import matplotlib as mpl
mpl.use('TKAgg')
from matplotlib import pyplot as plt
plt.ion()
import sys
import numpy as np
import ca_source_extraction as cse
#sys.path.append('../SPGL1_python_port')
#%
from time import time
from scipy.sparse import coo_matrix
import tifffile
import subprocess
import time as tm
from time import time
import pylab as pl
import psutil
import calblitz as cb
import cv2
import scipy
from sklearn.decomposition import MiniBatchDictionaryLearning,PCA,NMF,IncrementalPCA
import h5py
from glob import glob
#%% CREATE PATCH OF DATA
import os
fnames=[]
for file in os.listdir("./"):
if file.startswith("dendr") and file.endswith(".tif"):
fnames.append(file)
fnames.sort()
print fnames
#%%
Yr=cb.load(fnames[0],fr=30)
#Yr=Yr[:,80:130,360:410]
pl.imshow(np.mean(Yr,0),cmap=pl.cm.gray)
#%%
big_mov=[];
big_shifts=[]
for f in fnames[:]:
print f
Yr=cb.load(f,fr=30)
Yr=Yr[:,80:130,360:410]
# pl.imshow(np.mean(Yr,0))
#Yr=Yr.resize(fx=1,fy=1,fz=1)
Yr = np.transpose(Yr,(1,2,0))
d1,d2,T=Yr.shape
Yr=np.reshape(Yr,(d1*d2,T),order='F')
print Yr.shape
# np.save(fname[:-3]+'npy',np.asarray(Yr))
big_mov.append(np.asarray(Yr))
#%% should motion correct here
#%%
big_mov=np.concatenate(big_mov,axis=-1)
big_shifts=np.concatenate(big_shifts,axis=0)
#%%
np.save('Yr_DS_2.npy',big_mov)
np.savez('Yr_DS_2.npz',d1=d1,d2=d2)on correct here
#%% SUE ANN PATCH
Yr1_tot=cb.load('dendritic_demo.tif',fr=30)
Yr1=Yr1_tot
Yr2=Yr1.copy().bilateral_blur_2D(diameter=10,sigmaColor=10000,sigmaSpace=0)
Yr2,shifts,_,_=Yr2.motion_correct(remove_blanks=True)
Yr3=Yr1.copy().apply_shifts(shifts,remove_blanks=True)
Yr3.save('patch_sue.tif')
pl.imshow(np.mean(Yr3,0),cmap=pl.cm.gray)
#%% LOAD MOVIE AND MAKE DIMENSIONS COMPATIBLE WITH CNMF
reload=0
filename='resized_pf.tif'
#filename='patch_sue.tif'
#filename='patch.tif'
#filename='patch_2.tif'
#filename='PCsforPC.tif'
#filename='demoMovie.tif'
#filename='PCsforPC.tif'
#filename='demoMovie.tif'
#filename='selmanExample.tif'
t = tifffile.TiffFile(filename)
Yr = t.asarray().astype(dtype=np.float32)
#Yr=Yr[-3000:,:]
Yr = np.transpose(Yr,(1,2,0))
d1,d2,T=Yr.shape
Yr=np.reshape(Yr,(d1*d2,T),order='F')
#np.save('Y',Y)
np.save('Yr',Yr)
#Y=np.load('Y.npy',mmap_mode='r')
Yr=np.load('Yr.npy',mmap_mode='r')
Y=np.reshape(Yr,(d1,d2,T),order='F')
Cn = cse.utilities.local_correlations(Y)
#n_pixels_per_process=d1*d2/n_processes # how to subdivide the work among processes
pl.imshow(Cn,cmap=pl.cm.gray)
#%% USING FILTERS TO INCREASE SNR
N=0#Y.shape[-1]
N1=30000
m=cb.movie(np.transpose(np.array(Y[:,:,N:N1]),[2,0,1]),fr=30)
# denoise using PCA
#m=m.IPCA_denoise(components=100,batch=10000)
# denoise using median filter
#m=cb.movie(scipy.ndimage.median_filter(m, size=(3,2,2), mode='nearest'),fr=30)
# denoise using bilateral filters
#m=m.bilateral_blur_2D(diameter=10,sigmaColor=10000,sigmaSpace=0)
# denoise using percentile filter
#m=cb.movie(scipy.ndimage.percentile_filter(m, 90, size=(3,2,2), mode='nearest'),fr=30)
#denoise using gaussian filter: USE THIS!!!
m=cb.movie(scipy.ndimage.gaussian_filter(m, sigma=(.5,.5,.5), mode='nearest',truncate=2),fr=30)
# resize movie
m=m.resize(1,1,.2)
(m-np.mean(m)).play(gain=5.,magnification=2,fr=100)
#%%
m=m[:,10:60,27:495]
#%% ONLINE NMF USING CALBLITZ
#perc=8
#myfloat=np.float32
#m1= np.maximum(0,m-np.percentile(m,perc,axis=0))
#tm,sp=m1.online_NMF(n_components=15)
#pl.figure()
#for idx,mm in enumerate(sp):
# pl.subplot(6,5,idx+1)
# pl.imshow(mm,cmap=pl.cm.gray)
#%% PYTHON's BATCH NMF
remove_baseline=False
use_pixels_as_basis=True
# alpha is the L1 Norm regulatizer
#sue ann
#remove_baseline=True
#alpha= 10e2
#n_components=30
#demo dendritic
remove_baseline=True
alpha= 10e2
n_components=10
perc=20
# patch_1.tif
#alpha= 20e2
#n_components=8
#remove_baseline=False
#perc=.00001 #PC
# demoMovie.tif
#alpha= 50e2
#n_components=30
#perc=50
#remove_baseline=False
# PC
#alpha= 5e2
#n_components=50
# patch_2.tif
#alpha=5e1
#n_components=15
if remove_baseline:
m1= np.maximum(0,m-np.percentile(m,perc,axis=0))
else:
m1=m
mdl = NMF(n_components=n_components,verbose=True,init='nndsvd',tol=1e-10,max_iter=500,shuffle=True,alpha=alpha,l1_ratio=1)
T,d1,d2=np.shape(m1)
d=d1*d2
if use_pixels_as_basis:
yr=np.reshape(m1,[T,d],order='F')
else:
yr=np.reshape(m1,[T,d],order='F').T
#yr=-scipy.linalg.toeplitz(np.concatenate([np.array([1,-.9]),np.zeros(398)])).dot(yr)
#yr=yr-np.min(yr)
if use_pixels_as_basis:
C=mdl.fit_transform(yr)
X=mdl.components_.T
else:
X=mdl.fit_transform(yr)
C=mdl.components_.T
#%%
pl.figure()
for idx,mm in enumerate(X.T):
pl.subplot(10,1,idx+1)
pl.imshow(np.reshape(mm,(d1,d2),order='F'),cmap=pl.cm.gray,vmin=np.percentile(mm,1),vmax=np.percentile(mm,98))
pl.axis('off')
#%%
bckr=[0,4]
pfs=[1,2,3,5,6,8]
pl.figure()
pl.subplot(2,1,1)
pl.plot(C[:,bckr]+np.arange(0,80,40)[None,:])
pl.ylabel('a.u.')
pl.legend(list(bckr))
pl.axis('tight')
pl.subplot(2,1,2)
pl.plot(C[:,pfs]+np.arange(0,120,20)[None,:])
pl.xlabel('frames')
pl.ylabel('a.u.')
pl.axis('tight')
pl.legend(list([1,2,3,5,6,8]))
#%%
np.savez('res_auto_comp.npz',X=X,C=C,d1=d1,d2=d2,mdl=mdl)
#%% NOW RELOAD ORIGINAL MOVIE AND APPLY NMF INITIALIZING WITH VALUES COMPUTED ON DOWNSAMPLED VERSION
if not use_pixels_as_basis:
raise Exception('You cannot reuse spatial basis since you are using traces as basis')
m1=cb.movie(np.transpose(np.array(Y[:,:,N:N1]),[2,0,1]),fr=30)
m1=cb.movie(scipy.ndimage.gaussian_filter(m1, sigma=(1,1,0), mode='nearest',truncate=2),fr=30)
if remove_baseline:
m1= np.maximum(0,m1-np.percentile(m1,perc,axis=0))
T,d1,d2=np.shape(m1)
d=d1*d2
yr=np.reshape(m1,[T,d],order='F')
# FIT USING THE PREVIOUSLY COMPUTED FACTORIZATION
print ('Fitting....')
H=mdl.transform(yr)
# RUN AGAIN NMF INITIALIZING WITH THE COMPONENTS PREVIOUSLY COMPUTED
mdl1 = NMF(n_components=n_components,verbose=True,init='custom',tol=1e-10,max_iter=300,shuffle=True,alpha=alpha,l1_ratio=1)
traces= mdl1.fit_transform(yr,W=H,H=mdl.components_)
X1=mdl1.components_.T
pl.figure()
for idx,mm in enumerate(X1.T):
pl.subplot(7,7,idx+1)
pl.imshow(np.reshape(mm,(d1,d2),order='F'),cmap=pl.cm.gray,vmin=np.percentile(mm,1),vmax=np.percentile(mm,99))
pl.subplot(7,7,idx+2)
mu=np.mean(m1,0)
pl.imshow(mu,cmap=pl.cm.gray,vmin=np.percentile(mu,1),vmax=np.percentile(mu,99))
#%% PLAY DENOISED MOVIE
denoised=cb.movie(np.reshape(traces.dot(X1.T),[T,d1,d2],order='F'),fr=30)
denoised=cb.concatenate([denoised,cb.movie(np.transpose(np.array(Y[:,:,N:N1]),[2,0,1]),fr=30)],axis=2)
#denoised=cb.concatenate([denoised,m1],axis=1)
(denoised-np.mean(denoised,0)).play(gain=8.,magnification=8,backend='opencv',fr=30)
#%% PLAY DENOISED MOVIE ONLY UYSING SOME COMPONENTS
idx=np.array([0 ,1,2, 3, 4,5,6,7,8,9,10,11,12,13,14])
idx=np.array([0,12])
denoised=cb.movie(np.reshape(traces[:,idx].dot(X1[:,idx].T),[T,d1,d2],order='F'),fr=30)
(denoised-np.mean(denoised,0).min()).play(gain=5.,magnification=8,backend='opencv',fr=30)
#%% PLAY RESIDUAL MOVIE
residual=m1-denoised
(residual).play(gain=5.,magnification=4,backend='opencv',fr=100)
#%% plot components
if use_pixels_as_basis:
pl.plot(traces)
scipy.io.savemat('output_nmf.mat',{'traces':traces,'comps':X1})
#%% ONLINE NMF ########################################################################################################################
import spams
from PIL import Image
import time
N=0#Y.shape[-1]
N1=30000
use_pixels_as_basis=True
#remove_baseline=True # notice: online does not work without removing baseline!
#n_components=30
m1=cb.movie(np.transpose(np.array(Y[:,:,N:N1]),[2,0,1]),fr=30)
m1=cb.movie(scipy.ndimage.gaussian_filter(m1, sigma=(1,1,0), mode='nearest',truncate=2),fr=30)
if remove_baseline:
m1= np.maximum(0,m1-np.percentile(m1,perc,axis=0))
# resize movie
m=m.resize(1,1,.5)
myfloat=np.float32
T,d1,d2=np.shape(m1)
d=d1*d2
if use_pixels_as_basis:
yr=np.reshape(m1,[T,d],order='F')
else:
yr=np.reshape(m1,[T,d],order='F').T
X = np.asfortranarray(yr,dtype = myfloat)
########## FIRST EXPERIMENT ###########
tic = time.time()
# if you want to use NMF uncomment the following line
#(U,V) = spams.nmf(X,return_lasso= True,K = n_components,iter = -5)
# regularizer on space components
#spams.trainDL(X,return_model = True,D=np.asfortranarray(V.todense().T),posAlpha=True,posD=True,modeD=3,gamma1=.001,lambda1=3000,lambda2=0,mode=spams.spams_wrap.PENALTY,iter=-5)
if not use_pixels_as_basis:
# (D,model)=spams.trainDL(X,return_model = True,K=n_components,posAlpha=True,posD=True,modeD=3,gamma1=.001,lambda1=2000,lambda2=0,mode=spams.spams_wrap.PENALTY,iter=-5)
# U=model['B']
# V=model['A']
(U,V) = spams.nnsc(X,return_lasso=True,K=n_components,lambda1=1000,iter=-5)
else:
(U,V) = spams.nnsc(X,return_lasso=True,K=n_components,lambda1=1000,iter=-5)
#(U,V) = spams.nnsc(np.asfortranarray(yr.T,dtype = myfloat),return_lasso=True,K=15,lambda1=100,iter=-5)
#model=dict()
#model['A']=np.asfortranarray(V.todense().T)
#model['B']=np.asfortranarray(U)
#model['iter']=100
#(D,model) = spams.trainDL(X,return_model = True,D=np.asfortranarray(V.todense().T),posAlpha=True,posD=True,modeD=3,gamma1=.001,lambda1=3000,lambda2=0,mode=spams.spams_wrap.PENALTY,iter=-5)
if use_pixels_as_basis:
comp=V.todense()
else:
comp=U.T
#
#comp=V.T
tac = time.time()
t = tac - tic
pl.figure()
for idx,mm in enumerate(comp):
pl.subplot(6,6,idx+1)
pl.imshow(np.reshape(mm,(d1,d2),order='F'),cmap=pl.cm.gray)
#%% REALLY ONLINE
batch_size=5000;
K=30
lambda1=1000
iter_=1
A=[]
B=[]
total_iter=0
for count in range(1):
print total_iter
for idx in range(0,yr.shape[0],batch_size):
total_iter+=batch_size
fr=yr[idx:idx+batch_size]
if len(A) == 0:
# (D,model) = spams.trainDL(X,K=K,return_model = True,posAlpha=True,posD=True,lambda1=lambda1,iter=1)
# A=D
(A,B) = spams.nnsc(np.asfortranarray(fr),return_lasso=True,K=K,lambda1=lambda1,iter=iter_)
# (A,B) = spams.nmf(np.asfortranarray(fr),return_lasso=True,K=K,iter=iter_)
else:
model=dict()
model['A']=np.asfortranarray(A)
model['B']=np.asfortranarray(B.todense())
model['iter']=count
(A,B) = spams.nnsc(np.asfortranarray(fr),return_lasso=True,K=K,lambda1=lambda1,model=model,iter=iter_)
# (A,B) = spams.nmf(np.asfortranarray(fr),return_lasso=True,K=K,model=model,iter=iter_)
if use_pixels_as_basis:
comp=B.todense()
else:
comp=A.T
pl.figure()
for idx,mm in enumerate(comp):
pl.subplot(6,6,idx+1)
pl.imshow(np.reshape(mm,(d1,d2),order='F'),cmap=pl.cm.gray)
#(U,model1) = spams.trainDL(X,return_model=True,K=15,lambda1=100)
#(U,V) = spams.nnsc(X,return_lasso=True,K=15,lambda1=100,model=model1)
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%% DO NOT LOOK AT THIS STUFF ****************************************** STOP!!! ***********************************
#%%
m=cb.movie(np.transpose(np.array(Y[:,:,N:N1]),[2,0,1]),fr=30)
num_samp=np.round(m.shape[0])
traces=mdl.components_
new_tr=np.zeros((traces.shape[0],num_samp))
for idx,tr in enumerate(traces):
print idx
new_tr[idx]=np.maximum(scipy.signal.resample(tr,num_samp),0)
mdl1 = NMF(n_components=15,verbose=True,init='custom',tol=1e-10,max_iter=200,shuffle=True,alpha=alpha,l1_ratio=1)
m1= np.maximum(0,m-np.percentile(m,perc,axis=0))[:]#[:,20:35,20:35].resize(1,1,.05)
T,d1,d2=np.shape(m1)
d=d1*d2
yr=np.reshape(m1,[T,d],order='F')
newX=mdl1.fit_transform(yr.T,W=X.copy(),H=new_tr)
pl.figure()
for idx,mm in enumerate(newX.T):
pl.subplot(6,5,idx+1)
pl.imshow(np.reshape(mm,(d1,d2),order='F'),cmap=pl.cm.jet)
#%%
id_c=7
N=10
pl.plot(np.convolve(mdl.components_[id_c].T, np.ones((N,))/N, mode='valid'))
#%%
def mode(inputData, axis=None, dtype=None):
"""
Robust estimator of the mode of a data set using the half-sample mode.
.. versionadded: 1.0.3
"""
import numpy
if axis is not None:
fnc = lambda x: mode(x, dtype=dtype)
dataMode = numpy.apply_along_axis(fnc, axis, inputData)
else:
# Create the function that we can use for the half-sample mode
def _hsm(data):
if data.size == 1:
return data[0]
elif data.size == 2:
return data.mean()
elif data.size == 3:
i1 = data[1] - data[0]
i2 = data[2] - data[1]
if i1 < i2:
return data[:2].mean()
elif i2 > i1:
return data[1:].mean()
else:
return data[1]
else:
# wMin = data[-1] - data[0]
wMin=np.inf
N = data.size/2 + data.size%2
for i in xrange(0, N):
w = data[i+N-1] - data[i]
if w < wMin:
wMin = w
j = i
return _hsm(data[j:j+N])
data = inputData.ravel()
if type(data).__name__ == "MaskedArray":
data = data.compressed()
if dtype is not None:
data = data.astype(dtype)
# The data need to be sorted for this to work
data = numpy.sort(data)
# Find the mode
dataMode = _hsm(data)
return dataMode
def std(inputData, Zero=False, axis=None, dtype=None):
"""
Robust estimator of the standard deviation of a data set.
Based on the robust_sigma function from the AstroIDL User's Library.
.. versionchanged:: 1.0.3
Added the 'axis' and 'dtype' keywords to make this function more
compatible with numpy.std()
"""
if axis is not None:
fnc = lambda x: std(x, dtype=dtype)
sigma = numpy.apply_along_axis(fnc, axis, inputData)
else:
data = inputData.ravel()
if type(data).__name__ == "MaskedArray":
data = data.compressed()
if dtype is not None:
data = data.astype(dtype)
if Zero:
data0 = 0.0
else:
data0 = numpy.median(data)
maxAbsDev = numpy.median(numpy.abs(data-data0)) / 0.6745
if maxAbsDev < __epsilon:
maxAbsDev = (numpy.abs(data-data0)).mean() / 0.8000
if maxAbsDev < __epsilon:
sigma = 0.0
return sigma
u = (data-data0) / 6.0 / maxAbsDev
u2 = u**2.0
good = numpy.where( u2 <= 1.0 )
good = good[0]
if len(good) < 3:
print "WARNING: Distribution is too strange to compute standard deviation"
sigma = -1.0
return sigma
numerator = ((data[good]-data0)**2.0 * (1.0-u2[good])**2.0).sum()
nElements = (data.ravel()).shape[0]
denominator = ((1.0-u2[good])*(1.0-5.0*u2[good])).sum()
sigma = nElements*numerator / (denominator*(denominator-1.0))
if sigma > 0:
sigma = math.sqrt(sigma)
else:
sigma = 0.0
return sigma
#%%
cmp_=np.reshape(X[:,id_c],(d1,d2), order='F')/(np.linalg.norm(X[:,id_c])**2)
vct=np.sum(m*cmp_,axis=(1,2))
pl.plot(vct-np.mean(vct))
#%%
Y_n=np.zeros(Y.shape)
N=1400
Y_n=Y_n[:,:,:N]
ym=np.median(Y,axis=-1)
clahe = cv2.createCLAHE(clipLimit=100., tileGridSize=(11,11))
ymm=np.uint8(255*(ym-np.min(ym))/(np.max(ym)-np.min(ym)))
ymm=clahe.apply(ymm)
y__=np.zeros(Y[:,:,0].shape,dtype=np.float32)
for fr in range(N):
print fr
y1=Y[:,:,fr].copy()
y1 = cv2.bilateralFilter(y1,5,10000,0)
y1=cv2.ximgproc.guidedFilter(ymm,y1,radius=1,eps=0)
Y_n[:,:,fr] = y1
mn1=cb.movie(np.transpose(np.array(Y_n),[2,0,1]),fr=30)
mn2=cb.movie(np.transpose(np.array(Y[:,:,:N]),[2,0,1]),fr=30)
mn=cb.concatenate([mn1,mn2],axis=1)
(mn).play(gain=5.,magnification=4,backend='opencv',fr=100)
#%%
clahe = cv2.createCLAHE(clipLimit=100., tileGridSize=(11,11))
ymm=np.uint8(255*(ym-np.min(ym))/(np.max(ym)-np.min(ym)))
ymm=clahe.apply(ymm)
pl.imshow(ymm,cmap=pl.cm.gray)
#%%
pl.imshow(cv2.adaptiveThreshold(ymm,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2),cmap=pl.cm.gray)
pl.imshow(cv2.adaptiveThreshold(ymm,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2),cmap=pl.cm.gray)
pl.imshow(cv2.threshold(ymm,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[],cmap=pl.cm.gray)
#%%
def estimated_autocorrelation(x):
"""
http://stackoverflow.com/q/14297012/190597
http://en.wikipedia.org/wiki/Autocorrelation#Estimation
"""
n = len(x)
variance = x.var()
x = x-x.mean()
r = np.correlate(x, x, mode = 'full')[-n:]
assert np.allclose(r, np.array([(x[:n-k]*x[-(n-k):]).sum() for k in range(n)]))
result = r/(variance*(np.arange(n, 0, -1)))
return result
spikes_mat=[]
tr=traces[:,10]
size_chunk=100
thresh=np.median(tr)+3*np.std(tr)
for idx in range(len(tr)-size_chunk-1):
tr_tmp=tr[idx:idx+size_chunk]
if tr_tmp[0]<thresh and tr_tmp[-1]<thresh:
spikes_mat.append(tr_tmp)
#%%
spikes_mat=np.vstack(spikes_mat)
#pl.imshow(spikes_mat,aspect='auto',interpolation='none')
alpha=10
mdl1 = NMF(n_components=50,verbose=True,tol=1e-10,max_iter=500,shuffle=True,alpha=alpha,l1_ratio=1)
X=mdl1.fit_transform(spikes_mat)
pl.plot(mdl1.components_.T)
#%%
from sklearn.cluster import KMeans
km=KMeans(50)
X=km.fit_transform(spikes_mat)
labels=km.labels_
pl.plot(km.cluster_centers_.T)
#%%
pl.plot(tr)
#%%
#ym=np.median(m,axis=0)
ym=m.bin_median()
#ym=np.std(m,axis=0)
#clahe = cv2.createCLAHE(clipLimit=100., tileGridSize=(11,11))
guide_filter=np.uint8(255*(ym-np.min(ym))/(np.max(ym)-np.min(ym)))
#guide_filter=clahe.apply(guide_filter)
mn2=m.copy()
mn1=m.copy()#.bilateral_blur_2D(diameter=0,sigmaColor=10000,sigmaSpace=0)
mn1=mn1.guided_filter_blur_2D(guide_filter,radius=3, eps=0)
mn=cb.concatenate([mn1,m],axis=1)
(mn-np.mean(mn)).play(gain=5.,magnification=4,backend='opencv',fr=300)
#%% FILTER TESTING FILTER
pl.imshow(np.mean(Y,axis=-1),cmap=pl.cm.gray)
#%% BILATERAL FILTER EXAMPLE
N=10000
#
m=cb.movie(np.transpose(np.array(Y[:,:,:N]),[2,0,1]),fr=30)
m=m.resize(1,1,.1)
mn2=m.copy()
mn1=m.copy().bilateral_blur_2D(diameter=10,sigmaColor=10000,sigmaSpace=0)
mn1,shifts,xcorrs, template=mn1.motion_correct()
mn2=mn2.apply_shifts(shifts)
#mn1=cb.movie(np.transpose(np.array(Y_n),[2,0,1]),fr=30)
mn=cb.concatenate([mn1,m],axis=1)
(mn-np.mean(mn)).play(gain=2.,magnification=4,backend='opencv',fr=20)
#%% EFTYCHIOS METHOD TO SEPARATE PIXELS
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA,NMF
from sklearn.mixture import GMM
Ys=Yr
thresh_probability=0.5
num_psd_elms_high_freq=49;
cl_thr=0.8
#P.sn = sn(:);
#fprintf(' done \n');
psdx = np.sqrt(psx[:,3:]);
X = psdx[:,1:np.minimum(np.shape(psdx)[1],150)];
X = X-np.mean(X,axis=1)[:,np.newaxis]# bsxfun(@minus,X,mean(X,2)); % center
#X = X/sn[:,np.newaxis]#
X = X/np.percentile(X,90,axis=1)[:,np.newaxis]
#X = X/(+1e-5+np.std(X,axis=1)[:,np.newaxis])
#epsilon=1e-9
#X = X/(epsilon+np.linalg.norm(X,axis=1,ord=1)[:,np.newaxis])
pc=PCA(n_components=5)
cp=pc.fit_transform(X)
#nmf=NMF(n_components=2)
#nmr=nmf.fit_transform(X)
gmm=GMM(n_components=2)
Cx=gmm.fit_predict(cp)
L=gmm.predict_proba(cp)
Cx1=np.vstack([np.mean(X[Cx==0],0),np.mean(X[Cx==1],0)])
ind=np.argmin(np.mean(Cx1[:,-num_psd_elms_high_freq:],axis=1))
active_pixels = (L[:,ind]>thresh_probability)
active_pixels = L[:,ind]
pl.imshow(np.reshape((active_pixels),(d1,d2),order='F'))
#%%
ff=np.zeros(np.shape(A_or)[-1])
cl_thr=0.2
#ff = false(1,size(Am,2));
for i in range(np.shape(A_or)[-1]):
a1 = A_or[:,i]
a2 = A_or[:,i]*active_pixels
if np.sum(a2**2) >= cl_thr**2*np.sum(a1**2):
ff[i] = 1
id_set=1
cse.utilities.view_patches_bar(Yr,coo_matrix(A_or[:,ff==id_set]),C_or[ff==id_set,:],b2,f2, d1,d2, YrA=YrA[srt[ff==id_set],:])
#km=KMeans(n_clusters=2)
#Cx=km.fit_transform(X)
#Cx=km.fit_transform(cp)
#Cx=km.cluster_centers_
#L=km.labels_
#ind=np.argmin(np.mean(Cx[:,-49:],axis=1))
#active_pixels = (L==ind)
#centroids = Cx;